Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Resistance of Genetic Correlation Structure to Directional Selection in Drosophila melanogaster

Gerald S. Wilkinson, Kevin Fowler and Linda Partridge
Evolution
Vol. 44, No. 8 (Dec., 1990), pp. 1990-2003
DOI: 10.2307/2409609
Stable URL: http://www.jstor.org/stable/2409609
Page Count: 14
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Resistance of Genetic Correlation Structure to Directional Selection in Drosophila melanogaster
Preview not available

Abstract

The genetic covariance and correlation matrices for five morphological traits were estimated from four populations of fruit flies, Drosophila melanogaster, to measure the extent of change in genetic covariances as a result of directional selection. Two of the populations were derived from lines that had undergone selection for large or small thorax length over the preceding 23 generations. A third population was constituted using flies from control lines that were maintained with equivalent population sizes as the selected lines. The fourth population contained flies from the original cage population from which the selected and control lines had been started. Tests of the homogeneity of covariance matrices using maximum likelihood techniques revealed significant changes in covariance structure among the selected lines. Prediction of base population trait means from selected line means under the assumption of constant genetic covariances indicated that genetic covariances for the small population differed more from the base population than did the covariances for the large population. The predicted small population means diverged farther from the expected means because the additive genetic variance associated with several traits increased in value and most of the genetic covariances associated with one trait changed in sign. These results illustrate that genetic covariances may remain nearly constant in some situations while changing markedly in others. Possible developmental reasons for the genetic changes are discussed.

Page Thumbnails

  • Thumbnail: Page 
1990
    1990
  • Thumbnail: Page 
1991
    1991
  • Thumbnail: Page 
1992
    1992
  • Thumbnail: Page 
1993
    1993
  • Thumbnail: Page 
1994
    1994
  • Thumbnail: Page 
1995
    1995
  • Thumbnail: Page 
1996
    1996
  • Thumbnail: Page 
1997
    1997
  • Thumbnail: Page 
1998
    1998
  • Thumbnail: Page 
1999
    1999
  • Thumbnail: Page 
2000
    2000
  • Thumbnail: Page 
2001
    2001
  • Thumbnail: Page 
2002
    2002
  • Thumbnail: Page 
2003
    2003