Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Evolution of Obligate Siblicide in Boobies. 2: Food Limitation and Parent-Offspring Conflict

David J. Anderson
Evolution
Vol. 44, No. 8 (Dec., 1990), pp. 2069-2082
DOI: 10.2307/2409616
Stable URL: http://www.jstor.org/stable/2409616
Page Count: 14
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Evolution of Obligate Siblicide in Boobies. 2: Food Limitation and Parent-Offspring Conflict
Preview not available

Abstract

Proximate limitation on parental food delivery has long been invoked to explain the evolution of single-chick broods of pelagic seabirds such as masked boobies (Sula dactylatra). A second possible proximate limit on brood size is siblicide driven by genetic parent-offspring conflict (POC) over brood size, if siblicidal offspring can reduce brood size to one even if the parents' optimal brood size is greater than one. I tested these two hypotheses by experimentally suppressing obligate siblicide in masked booby broods and comparing breeding parameters of these broods with unmanipulated single-chick control broods. Per capita mortality rate of experimental nestlings was higher than that of controls, but this deficit was more than made up by larger brood size. Parents of experimental broods brought more food to offspring, had higher fledging success, and apparently incurred no additional major short-term cost of reproduction, relative to parents of control broods, thus refuting the food limitation hypothesis. Estimates of inclusive fitness of chicks in experimental broods were higher than were those of control nestlings, a result inconsistent with the POC hypothesis that the siblicidal offspring's optimal brood size is one while the parents' optimum is greater than one. This discrepency between natural brood size and apparent brood size optima might be resolved in several ways: experimental artifacts may give misleading estimates of optimal brood size; experimental and control offspring may have different reproductive values at the time of fledging; nestling masked boobies may face a special frequency-dependent case of POC in which the high risk of sharing a nest with a siblicidal sibling makes invasion of other behavioral genotypes difficult even when offspring and parent inclusive fitnesses are higher from a nonsiblicidal brood of two than from a brood of one.

Page Thumbnails

  • Thumbnail: Page 
2069
    2069
  • Thumbnail: Page 
2070
    2070
  • Thumbnail: Page 
2071
    2071
  • Thumbnail: Page 
2072
    2072
  • Thumbnail: Page 
2073
    2073
  • Thumbnail: Page 
2074
    2074
  • Thumbnail: Page 
2075
    2075
  • Thumbnail: Page 
2076
    2076
  • Thumbnail: Page 
2077
    2077
  • Thumbnail: Page 
2078
    2078
  • Thumbnail: Page 
2079
    2079
  • Thumbnail: Page 
2080
    2080
  • Thumbnail: Page 
2081
    2081
  • Thumbnail: Page 
2082
    2082