Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Global Population Structure and Natural History of the Green Turtle (Chelonia mydas) in Terms of Matriarchal Phylogeny

Brian W. Bowen, Anne B. Meylan, J. Perran Ross, Colin J. Limpus, George H. Balazs and John C. Avise
Evolution
Vol. 46, No. 4 (Aug., 1992), pp. 865-881
DOI: 10.2307/2409742
Stable URL: http://www.jstor.org/stable/2409742
Page Count: 17
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Global Population Structure and Natural History of the Green Turtle (Chelonia mydas) in Terms of Matriarchal Phylogeny
Preview not available

Abstract

To address aspects of the evolution and natural history of green turtles, we assayed mitochondrial (mt). DNA genotypes from 226 specimens representing 15 major rookeries around the world. Phylogenetic analyses of these data revealed (1) a comparatively low level of mtDNA variability and a slow mtDNA evolutionary rate (relative to estimates for many other vertebrates); (2) a fundamental phylogenetic split distinguishing all green turtles in the Atlantic-Mediterranean from those m the Indian-Pacific Oceans; (3) no evidence for matrilineal distinctiveness ora commonly recognized taxonomic form in the East Pacific (the black turtle C. rn. agassizi or C. agassizi); (4) in opposition to published hypotheses, a recent origin for the Ascension Island rookery, and its close genetic relationship to a geographically proximate rookery m Brazil; and (5) a geographic population substructure within each ocean basin (typically involving fixed or nearly fixed genotypic differences between nesting populations) that suggests a strong propensity for natal homing by females. Overall, the global matriarchal phylogeny of Chelonia mydas appears to have been shaped by both geography (ocean basin separations) and behavior (natal homing on regional or rookeryspecific scales). The shallow evolutionary population structure within ocean basins likely results from demographic turnover (extinction and colonization) of rookeries over time frames that are short by evolutionary standards but long by ecological standards.

Page Thumbnails

  • Thumbnail: Page 
865
    865
  • Thumbnail: Page 
866
    866
  • Thumbnail: Page 
867
    867
  • Thumbnail: Page 
868
    868
  • Thumbnail: Page 
869
    869
  • Thumbnail: Page 
870
    870
  • Thumbnail: Page 
871
    871
  • Thumbnail: Page 
872
    872
  • Thumbnail: Page 
873
    873
  • Thumbnail: Page 
874
    874
  • Thumbnail: Page 
875
    875
  • Thumbnail: Page 
876
    876
  • Thumbnail: Page 
877
    877
  • Thumbnail: Page 
878
    878
  • Thumbnail: Page 
879
    879
  • Thumbnail: Page 
880
    880
  • Thumbnail: Page 
881
    881