Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Geography of Mitochondrial DNA Variation, Population Structure, Hybridization, and Species Limits in the Fox Sparrow (Passerella iliaca)

Robert M. Zink
Evolution
Vol. 48, No. 1 (Feb., 1994), pp. 96-111
DOI: 10.2307/2410006
Stable URL: http://www.jstor.org/stable/2410006
Page Count: 16
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Geography of Mitochondrial DNA Variation, Population Structure, Hybridization, and Species Limits in the Fox Sparrow (Passerella iliaca)
Preview not available

Abstract

Geographic variation in mitochondrial DNA (mtDNA) restriction sites was studied in the fox sparrow (Passerella iliaca). Seventy-eight haplotypes were found. Haplotypes fall into four phylogeographic groups that correspond to groups defined by plumage characters. The geographic distribution of these four groups does not appear congruent with mtDNA patterns in other vertebrates. Within each group, there is little geographic variation in mtDNA restriction sites, although there is geographic variation in plumage coloration and body size. The evolution of mtDNA diversity in fox sparrows seems best explained by vicariant events rather than isolation by distance. The mtDNA evidence suggests that Passerella megarhyncha and Passerella schistacea, two nonsister taxa that occur in western North America, have independently undergone bottlenecks. Hybridization is limited between all pairs of taxa except P megarhyncha and P. schistacea, where mtDNA evidence suggests a narrow contact zone along the interface of the Great Basin and Sierra Nevada/Cascades. Morphometric characters intergrade over a broader area, suggesting that different processes are responsible for the two gradients. The occurrence of limited backcrossing among taxa suggests that cytoplasmic-nuclear incompatibility is lacking. The number of biological species would range from one to four, depending on the degree of hybridization tolerated. The mtDNA and plumage characters suggest four phylogenetic species: P. iliaca, P. megarhyncha, P. unalaschcensis, and P. schistacea.

Page Thumbnails

  • Thumbnail: Page 
96
    96
  • Thumbnail: Page 
97
    97
  • Thumbnail: Page 
[98]
    [98]
  • Thumbnail: Page 
99
    99
  • Thumbnail: Page 
100
    100
  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103
  • Thumbnail: Page 
104
    104
  • Thumbnail: Page 
105
    105
  • Thumbnail: Page 
106
    106
  • Thumbnail: Page 
107
    107
  • Thumbnail: Page 
108
    108
  • Thumbnail: Page 
109
    109
  • Thumbnail: Page 
110
    110
  • Thumbnail: Page 
111
    111