Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

The Skeleton Space: A Finite Set of Organic Designs

R. D. K. Thomas and W.-E. Reif
Evolution
Vol. 47, No. 2 (Apr., 1993), pp. 341-360
DOI: 10.2307/2410056
Stable URL: http://www.jstor.org/stable/2410056
Page Count: 20
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Skeleton Space: A Finite Set of Organic Designs
Preview not available

Abstract

The structures of animal skeletons converge repeatedly on a limited number of architectural designs that can be constructed by growing organisms and that are functionally viable, although often not optimal. Properties of materials, construction rules that determine patterns of development, and physical constraints exerted by the requirements of function suggest that organic structure must necessarily approach these recurrent elements of design. A set of potential designs for the elements of animal skeletons is derived in terms of geometric and construction rules and the properties of materials. Skeletons of actual living and extinct organisms are matched with the possibilities defined within this theoretical morphospace. This provides a metric of skeletal complexity and of the extent to which various groups of animals have been able to exploit the range of possibilities of organic structure. These analyses show that the most evolutionarily advanced animals within a given phylum do not have the most complex skeletons; that arthropods are less morphologically diverse than vertebrates and molluscs; that the physical constraints of life on land and in the air substantially limit the variety of skeletal structures suitable for life in these environments; and that overall the range of possible skeletal designs has been very fully exploited by living and extinct organisms. These results strongly support the hypothesis that the essential elements of organic design are inherent in the material properties of the universe. The organizational properties of animal skeletons suggest that their design elements are fixed point attractors, structures that we characterize as topological attractors that evolution cannot avoid.

Page Thumbnails

  • Thumbnail: Page 
341
    341
  • Thumbnail: Page 
342
    342
  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344
  • Thumbnail: Page 
[345]
    [345]
  • Thumbnail: Page 
346
    346
  • Thumbnail: Page 
347
    347
  • Thumbnail: Page 
348
    348
  • Thumbnail: Page 
349
    349
  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
356
    356
  • Thumbnail: Page 
[357]
    [357]
  • Thumbnail: Page 
[358]
    [358]
  • Thumbnail: Page 
[359]
    [359]
  • Thumbnail: Page 
[360]
    [360]