Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Asymmetric Competition in Mixed Populations of Tadpoles of the Hybridogenetic Rana esculenta Complex

Raymond D. Semlitsch
Evolution
Vol. 47, No. 2 (Apr., 1993), pp. 510-519
DOI: 10.2307/2410068
Stable URL: http://www.jstor.org/stable/2410068
Page Count: 10
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Asymmetric Competition in Mixed Populations of Tadpoles of the Hybridogenetic Rana esculenta Complex
Preview not available

Abstract

Hybridogenetic Rana esculenta tadpoles display tolerance to extreme environmental conditions and fit criteria of the "general-purpose" genotype. A trade-off between generality and competitive ability is assumed to occur in asexual species, but the evidence remains unclear. The purpose of my experiment was to test the competitive ability of hemiclonal hybrid Rana esculenta tadpoles relative to the parental species Rana lessonae. Mixed and single genotype populations of R. esculenta and R. lessonae tadpoles were reared at three densities in artificial ponds. Survival of R. esculenta was higher than for R. lessonae tadpoles, but did not differ among densities. Body size at metamorphosis was the same between genotypes, but decreased with increasing density. Larval period was not affected by density, but R. esculenta tended to metamorphose earlier than R. lessonae. Percentage of individuals metamorphosing was higher for R. esculenta at both medium and high densities, but the same as R. lessonae at the low density. The difference in survival, body size, and larval period between tadpoles reared in single and mixed genotype populations was unaffected by genotype or density. The difference in the percentage of metamorphs, however, was strongly affected. The percentage of hybrids metamorphosing was 9% above the responses of single genotype populations at the highest density. Conversely, the percentage of R. lessonae metamorphosing was 12% below the responses of single genotype populations at the same density. Hybrid success in this experiment further supports the criterion of a "general-purpose" genotype without assumptions of reduced competitive ability.

Page Thumbnails

  • Thumbnail: Page 
510
    510
  • Thumbnail: Page 
511
    511
  • Thumbnail: Page 
512
    512
  • Thumbnail: Page 
513
    513
  • Thumbnail: Page 
514
    514
  • Thumbnail: Page 
515
    515
  • Thumbnail: Page 
516
    516
  • Thumbnail: Page 
517
    517
  • Thumbnail: Page 
518
    518
  • Thumbnail: Page 
519
    519