Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Phage-Mediated Selection and the Evolution and Maintenance of Restriction-Modification

Ryszard Korona and Bruce R. Levin
Evolution
Vol. 47, No. 2 (Apr., 1993), pp. 556-575
DOI: 10.2307/2410071
Stable URL: http://www.jstor.org/stable/2410071
Page Count: 20
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Phage-Mediated Selection and the Evolution and Maintenance of Restriction-Modification
Preview not available

Abstract

Restriction-modification (R-M) was discovered because it provides bacteria with immunity to phage infection. But, is phage-mediated selection the sole mechanism responsible for the evolution and maintenance of these ubiquitous and multiply evolved systems? In an effort to answer this question, we have performed experiments with laboratory populations of E. coli and phage and computer simulations. We consider two ecological situations whereby phage-mediated selection could favor R-M immunity; i) when bacteria with a novel R-M system invade communities of phage-sensitive bacteria in which there are one or more species of phage, and ii) when bacteria colonize bacterial-free habitats in which phage are present. The results of our experiments indicate that in established communities of bacteria and phage, the advantage R-M provides an invading population of bacteria is ephemeral. Within short order, mutants resistant (refractory) to the phage evolve in the dominant population and subsequently in the invading population. The outcome of competition then depends on the relative fitness of the resistant states of these bacterial clones, rather than R-M. As a consequence of sequential selection for independent mutants, this rapid evolution of resistance occurs even when two and three species of phage are present. While in our experiments resistance also evolved when bacteria colonized new habitats in which phage were present, a novel R-M system greatly augmented the likelihood of their becoming established. We interpret the results of this study as support for the hypothesis that the latter, colonization selection, may play an important role in the evolution and maintenance of restriction-modification. However, we also see these results and other observations we discuss as questioning whether protection against phage is the unique biological role of restriction-modification.

Page Thumbnails

  • Thumbnail: Page 
556
    556
  • Thumbnail: Page 
557
    557
  • Thumbnail: Page 
558
    558
  • Thumbnail: Page 
559
    559
  • Thumbnail: Page 
560
    560
  • Thumbnail: Page 
561
    561
  • Thumbnail: Page 
562
    562
  • Thumbnail: Page 
563
    563
  • Thumbnail: Page 
564
    564
  • Thumbnail: Page 
565
    565
  • Thumbnail: Page 
[566]
    [566]
  • Thumbnail: Page 
567
    567
  • Thumbnail: Page 
568
    568
  • Thumbnail: Page 
569
    569
  • Thumbnail: Page 
570
    570
  • Thumbnail: Page 
[571]
    [571]
  • Thumbnail: Page 
572
    572
  • Thumbnail: Page 
573
    573
  • Thumbnail: Page 
574
    574
  • Thumbnail: Page 
575
    575