Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Turbinates in Therapsids: Evidence for Late Permian Origins of Mammalian Endothermy

Willem J. Hillenius
Evolution
Vol. 48, No. 2 (Apr., 1994), pp. 207-229
DOI: 10.2307/2410089
Stable URL: http://www.jstor.org/stable/2410089
Page Count: 23
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Turbinates in Therapsids: Evidence for Late Permian Origins of Mammalian Endothermy
Preview not available

Abstract

The structure and function of the nasal conchae of extant reptiles, birds, and mammals are reviewed, and the relationships to endothermy of the mammalian elements are examined. Reptilian conchae are relatively simple, recurved structures, which bear primarily sensory (olfactory) epithelium. Conversely, the conchae, or turbinates, of birds and mammals are considerably more extensive and complex, and bear, in addition, nonsensory (respiratory) epithelium. Of the mammalian turbinates, only the exclusively respiratory maxilloturbinal has a clear functional relationship with endothermy, as it reduces desiccation associated with rapid and continuous pulmonary ventilation. The other mammalian turbinates principally retain the primitive, olfactory function of the nasal conchae. The maxilloturbinates are the first reliable morphological indicator of endothermy that can be used in the fossil record. In fossil mammals and mammallike reptiles, the presence and function of turbinates are most readily revealed by the ridges by which they attach to the walls of the nasal cavity. Ridges for olfactory turbinals are located posterodorsally, away from the main flow of respiratory air, whereas those of the respiratory maxilloturbinals are situated in the anterolateral portion of the nasal passage, directly in the path of respired air. The maxilloturbinal is also characterized by its proximity to the opening of the nasolacrimal canal. Posterodorsal ridges, for olfactory turbinals, have long been recognized in many mammallike reptiles, including early forms such as pelycosaurs. However, ridges for respiratory turbinals have not been identified previously in this group. In this paper, the presence of anterolateral ridges, which most likely supported respiratory turbinals, is reported in the primitive therocephalian Glanosuchus and in several cynodonts. The presence of respiratory turbinals in these advanced mammallike reptiles suggests that the evolution of "mammalian" oxygen consumption rates may have begun as early as the Late Permian and developed in parallel in therocephalians and cynodonts. Full mammalian endothermy may have taken as much as 40 to 50 million yr to develop.

Page Thumbnails

  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211
  • Thumbnail: Page 
212
    212
  • Thumbnail: Page 
213
    213
  • Thumbnail: Page 
214
    214
  • Thumbnail: Page 
215
    215
  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217
  • Thumbnail: Page 
218
    218
  • Thumbnail: Page 
219
    219
  • Thumbnail: Page 
220
    220
  • Thumbnail: Page 
221
    221
  • Thumbnail: Page 
222
    222
  • Thumbnail: Page 
223
    223
  • Thumbnail: Page 
224
    224
  • Thumbnail: Page 
225
    225
  • Thumbnail: Page 
226
    226
  • Thumbnail: Page 
227
    227
  • Thumbnail: Page 
228
    228
  • Thumbnail: Page 
229
    229