If you need an accessible version of this item please contact JSTOR User Support

Population Genetic Structure of Cecropia obtusifolia, A Tropical Pioneer Tree Species

Elena R. Alvarez-Buylia and Andriana A. Garay
Evolution
Vol. 48, No. 2 (Apr., 1994), pp. 437-453
DOI: 10.2307/2410103
Stable URL: http://www.jstor.org/stable/2410103
Page Count: 17
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Population Genetic Structure of Cecropia obtusifolia, A Tropical Pioneer Tree Species
Preview not available

Abstract

Theoretical analyses of the genetic organization of pioneer species have postulated two very different scenarios. Some models have predicted that such species would show strong population substructuring, whereas other models have suggested that extinction and recolonization can augment gene flow and reduce interpopulation differentiation. We tested these alternative scenarios by analyzing the genetic structure of eight loci from populations of the pioneer dioecious tree, Cecropia obtusifolia, in the tropical rain forest region of Los Tuxtlas, Mexico. The populations studied exhibit low overall FST values, no clear pattern of isolation by distance, and high estimates of gene flow. These results suggest either that the species is not at a genetic equilibrium under present levels of gene flow with populations derived from each other in the recent past, or that pollen and seed dispersal in this species occur over long distances (up to more than 100 km). Mating among relatives appears higher than expected by chance based on significantly positive fixation indices (F) and FIS values at some loci. However, no direct evidence for biparental inbreeding was found. The multilocus and single-locus outcrossing rates for C. obtusifolia were estimated at tm = 0.974 (SE = 0.024) and ts = 0.980 (SE = 0.035), respectively. These are not significantly different from 1, and the difference, tm - ts = -0.006 (SE = 0.018), is not significantly different from 0. These estimates, however, could be biased because in all enzymes, except PGM-1, we found statistically significant departures from the mixed-mating model used to estimate them. Two rare alleles were found only in seeds collected from the soil, and the greatest number of different alleles were found also in soil seeds. It is hypothesized that the seed bank may play an important role in the genetic buffering of C. obtusifolia. Significantly positive or negative fixation indices in adults at some loci and significantly different heterozygosities among different life stages (from seeds to adults) suggest the action of selection at some loci.

Page Thumbnails

  • Thumbnail: Page 
437
    437
  • Thumbnail: Page 
438
    438
  • Thumbnail: Page 
439
    439
  • Thumbnail: Page 
440
    440
  • Thumbnail: Page 
441
    441
  • Thumbnail: Page 
442
    442
  • Thumbnail: Page 
443
    443
  • Thumbnail: Page 
444
    444
  • Thumbnail: Page 
445
    445
  • Thumbnail: Page 
446
    446
  • Thumbnail: Page 
447
    447
  • Thumbnail: Page 
448
    448
  • Thumbnail: Page 
449
    449
  • Thumbnail: Page 
450
    450
  • Thumbnail: Page 
451
    451
  • Thumbnail: Page 
452
    452
  • Thumbnail: Page 
453
    453