Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Isolation by Distance in Equilibrium and Non-Equilibrium Populations

Montgomery Slatkin
Evolution
Vol. 47, No. 1 (Feb., 1993), pp. 264-279
DOI: 10.2307/2410134
Stable URL: http://www.jstor.org/stable/2410134
Page Count: 16
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Isolation by Distance in Equilibrium and Non-Equilibrium Populations
Preview not available

Abstract

It is shown that for allele frequency data a useful measure of the extent of gene flow between a pair of populations is M̂ = (1/FST - 1)/4, which is the estimated level of gene flow in an island model at equilibrium. For DNA sequence data, the same formula can be used if FST is replaced by NST. In a population with restricted dispersal, analytic theory shows that there is a simple relationship between M and geographic distance in both equilibrium and non-equilibrium populations and that this relationship is approximately independent of mutation rate when the mutation rate is small. Simulation results show that with reasonable sample sizes, isolation by distance can indeed be detected and that, at least in some cases, non-equilibrium patterns can be distinguished. This approach to analyzing isolation by distance is used for two allozyme data sets, one from gulls and one from pocket gophers.

Page Thumbnails

  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266
  • Thumbnail: Page 
267
    267
  • Thumbnail: Page 
268
    268
  • Thumbnail: Page 
269
    269
  • Thumbnail: Page 
270
    270
  • Thumbnail: Page 
271
    271
  • Thumbnail: Page 
272
    272
  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277
  • Thumbnail: Page 
278
    278
  • Thumbnail: Page 
279
    279