Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Comparison of Two Sticklebacks

Troy Day, John Pritchard and Dolph Schluter
Evolution
Vol. 48, No. 5 (Oct., 1994), pp. 1723-1734
DOI: 10.2307/2410260
Stable URL: http://www.jstor.org/stable/2410260
Page Count: 12
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Comparison of Two Sticklebacks
Preview not available

Abstract

We present results of an experiment designed to address fundamental issues in the ecology and evolution of plastic trophic morphology: (1) Is observed plasticity adaptive? (2) How much interspecific morphological variation is the result of plasticity? (3) Have different selective regimes resulted in the evolution of different degrees of plasticity? (4) Is genetic variation for phenotypic plasticity present in contemporary populations? We raised fish from two recently diverged species of freshwater threespine sticklebacks on two different diets representative of the natural prey of the two species. Both species exhibited morphological plasticity in an adaptive direction: each species more closely resembled the other when raised on the latter's diet. Dietreversal reduced the natural morphological gap between these two species, -1% to 58%, depending on the trait. One species is known to have a more variable diet in the wild than the other species, and we found that it also exhibited the greater amount of morphological plasticity. Given that the two species have recently diverged, this result is compelling evidence that diet variability is important in the evolution of plastic trophic morphology. Finally, by using a full-sib experimental design, we demonstrated that genetic variation for morphological plasticity exists in contemporary populations, thus confirming that plasticity has evolutionary potential.

Page Thumbnails

  • Thumbnail: Page 
1723
    1723
  • Thumbnail: Page 
1724
    1724
  • Thumbnail: Page 
1725
    1725
  • Thumbnail: Page 
1726
    1726
  • Thumbnail: Page 
1727
    1727
  • Thumbnail: Page 
1728
    1728
  • Thumbnail: Page 
1729
    1729
  • Thumbnail: Page 
1730
    1730
  • Thumbnail: Page 
1731
    1731
  • Thumbnail: Page 
1732
    1732
  • Thumbnail: Page 
1733
    1733
  • Thumbnail: Page 
1734
    1734