Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Ovule Packaging in Stochastic Pollination and Fertilization Environments

Martin Burd
Evolution
Vol. 49, No. 1 (Feb., 1995), pp. 100-109
DOI: 10.2307/2410296
Stable URL: http://www.jstor.org/stable/2410296
Page Count: 10
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Ovule Packaging in Stochastic Pollination and Fertilization Environments
Preview not available

Abstract

The modular morphology of plants has important consequences for reproductive strategies. Ovules are packaged in discrete structures (flowers) that usually vary stochastically in pollen capture and ovule fertilization, because of the vagaries of pollen transfer by external agents. Different ovule packaging schemes may use limited reproductive resources more or less effectively, so that some number of ovules per flower may be optimal, given the prevailing probabilities of ovule fertilization. I derive a phenotypic model for ovule number per flower that maximizes the expected total ovule fertilizations on a plant when pollination and fertilization vary randomly among individual flowers. This model predicts that, except for small or inexpensive flowers, ovules should be "oversupplied" relative to the mean receipt of pollen tubes, so that pollen limitation of seed set should be common. Published data are congruent with this prediction. Additional hypotheses on the relation of ovule packaging to floral cost, plant size, and variance in pollen receipt are suggested by the model, but few data exist to evaluate these hypotheses.

Page Thumbnails

  • Thumbnail: Page 
100
    100
  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103
  • Thumbnail: Page 
104
    104
  • Thumbnail: Page 
105
    105
  • Thumbnail: Page 
106
    106
  • Thumbnail: Page 
107
    107
  • Thumbnail: Page 
108
    108
  • Thumbnail: Page 
109
    109