Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Direct Selection on Life Span in Drosophila melanogaster

Bas Zwaan, R. Bijlsma and R. F. Hoekstra
Evolution
Vol. 49, No. 4 (Aug., 1995), pp. 649-659
DOI: 10.2307/2410318
Stable URL: http://www.jstor.org/stable/2410318
Page Count: 11
  • Read Online (Free)
  • Download ($4.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Direct Selection on Life Span in Drosophila melanogaster
Preview not available

Abstract

An important issue in the study of the evolution of aging in Drosophila melanogaster is whether decreased early fecundity is inextricably coupled with increased life span in selection experiments on age at reproduction. Here, this problem has been tackled using an experimental design in which selection is applied directly to longevity. Selection appeared successful for short and long life, in females as well as males. Progeny production of females selected for long life was lower than for short-lived females throughout their whole life. No increase of late-life reproduction in long-lived females occurred, as has been found in selection experiments on age at reproduction. This discrepancy is explained in terms of the inadequacy of the latter design to separate selection on life span from selection on late-life fecundity. Moreover, starvation resistance and fat content were lower for adults selected for short life. In general, the data support the negative-pleiotropy-disposable-soma theory of aging, and it is hypothesized that the pleiotropic allocation of resources to maintenance versus to reproduction as implicated in the theory might involve lipid metabolism. It is argued that further research on this suggestion is urgent and should certainly comprise observations on male reproduction because these are for the greater part still lacking. In conclusion, the longevity of D. melanogaster can be genetically altered in a direct-selection design, and such an increase is accompanied by a decreased general reproduction and thus early reproduction.

Page Thumbnails

  • Thumbnail: Page 
649
    649
  • Thumbnail: Page 
650
    650
  • Thumbnail: Page 
651
    651
  • Thumbnail: Page 
652
    652
  • Thumbnail: Page 
653
    653
  • Thumbnail: Page 
654
    654
  • Thumbnail: Page 
655
    655
  • Thumbnail: Page 
656
    656
  • Thumbnail: Page 
657
    657
  • Thumbnail: Page 
658
    658
  • Thumbnail: Page 
659
    659