Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Long-Term Laboratory Evolution of a Genetic Life-History Trade-Off in Drosophila melanogaster. 1. The Role of Genotype-by-Environment Interaction

Armand M. Leroi, Adam K. Chippindale and Michael R. Rose
Evolution
Vol. 48, No. 4 (Aug., 1994), pp. 1244-1257
DOI: 10.2307/2410382
Stable URL: http://www.jstor.org/stable/2410382
Page Count: 14
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Long-Term Laboratory Evolution of a Genetic Life-History Trade-Off in Drosophila melanogaster. 1. The Role of Genotype-by-Environment Interaction
Preview not available

Abstract

Trade-offs among life-history traits are often thought to constrain the evolution of populations. Here we report the disappearance of a trade-off between early fecundity on the one hand, and late-life fecundity, starvation resistance, and longevity on the other, over 10 yr of laboratory selection for late-life reproduction. Whereas the selected populations showed an initial depression in early-life fecundity, they later converged upon the controls and then surpassed them. The evolutionary loss of the trade-off among life-history traits is considered attributable to the following factors: (1) the existence of differences in the culture regimes of the short- and long-generation populations other than the demographic differences deliberately imposed; (2) adaptation of one or both of these sets of populations to the unique aspects of their culture regimes; (3) the existence of an among-environment trade-off in the expression of early fecundity in the two culture regimes, as reflected in assays that mimic those regimes. The trade-off between early and late-life reproductive success, as manifest among divergently selected populations, is apparent or not depending on the assay environment. This demonstration that strong genotype-by-environment interactions can obscure a fundamental trade-off points to the importance of controlling all aspects of the culture regime of experimental populations and the difficulty of doing so even in the laboratory.

Page Thumbnails

  • Thumbnail: Page 
1244
    1244
  • Thumbnail: Page 
1245
    1245
  • Thumbnail: Page 
1246
    1246
  • Thumbnail: Page 
1247
    1247
  • Thumbnail: Page 
1248
    1248
  • Thumbnail: Page 
1249
    1249
  • Thumbnail: Page 
1250
    1250
  • Thumbnail: Page 
1251
    1251
  • Thumbnail: Page 
1252
    1252
  • Thumbnail: Page 
1253
    1253
  • Thumbnail: Page 
1254
    1254
  • Thumbnail: Page 
1255
    1255
  • Thumbnail: Page 
1256
    1256
  • Thumbnail: Page 
1257
    1257