Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Effects of the Relative Geographic Scales of Gene Flow and Selection on Morph Frequencies in the Walking-Stick Timema cristinae

Cristina P. Sandoval
Evolution
Vol. 48, No. 6 (Dec., 1994), pp. 1866-1879
DOI: 10.2307/2410514
Stable URL: http://www.jstor.org/stable/2410514
Page Count: 14
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Effects of the Relative Geographic Scales of Gene Flow and Selection on Morph Frequencies in the Walking-Stick Timema cristinae
Preview not available

Abstract

Gene frequencies in large populations are determined by a balance between selection and gene flow between neighborhoods of different selection regimes. This balance is affected by the area of the patches of a given selection regime relative to the gene-flow distance. If patches are small relative to gene-flow distance, similarity in the total area occupied by different patch types is a crucial condition for the stability of polymorphisms. However, if patches are larger than the gene-flow distance, then the relative area of different patch types is less important because of reduced gene flow resulting from isolation by distance. Two morphs (striped and unstriped) of the walking-stick Timema cristinae were each strongly associated with patches of distinct species of food plants on which they are most cryptic. The frequency of a morph was high on the plant on which it is most cryptic when either: (1) the area occupied by the food plant (patch) was very large; (2) the patch was completely isolated from other patches; or (3) the patch was larger than adjacent patches. Results (1) and (2) are consistent with isolation-by-distance models, and result (3) is consistent with Levene's multiple-niche polymorphism model.

Page Thumbnails

  • Thumbnail: Page 
1866
    1866
  • Thumbnail: Page 
1867
    1867
  • Thumbnail: Page 
1868
    1868
  • Thumbnail: Page 
1869
    1869
  • Thumbnail: Page 
1870
    1870
  • Thumbnail: Page 
1871
    1871
  • Thumbnail: Page 
1872
    1872
  • Thumbnail: Page 
1873
    1873
  • Thumbnail: Page 
1874
    1874
  • Thumbnail: Page 
1875
    1875
  • Thumbnail: Page 
1876
    1876
  • Thumbnail: Page 
1877
    1877
  • Thumbnail: Page 
[1878]
    [1878]
  • Thumbnail: Page 
[1879]
    [1879]