Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Genetic Structure of Coexisting Sexual and Clonal Subpopulations in a Freshwater Snail (Potamopyrgus antipodarum)

Jennifer A. Fox, Mark F. Dybdahl, Jukka Jokela and Curtis M. Lively
Evolution
Vol. 50, No. 4 (Aug., 1996), pp. 1541-1548
DOI: 10.2307/2410890
Stable URL: http://www.jstor.org/stable/2410890
Page Count: 8
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Genetic Structure of Coexisting Sexual and Clonal Subpopulations in a Freshwater Snail (Potamopyrgus antipodarum)
Preview not available

Abstract

We examined clonal diversity and the distribution of both clonal and sexual genotypes m a single population of freshwater snails (Potamopyrgus antipodarum) in which diploid sexual individuals and triploid parthenogens coexist. A genetic analysis of individuals from three habitat zones in Lake Alexandrina, New Zealand revealed extremely high clonal diversity: 165 genotypes among 605 clonal individuals. The frequency of triploid clonal individuals increased with increasing depth in the lake, and most of the individual clones were habitat specific, suggesting that differences among habitats are important in structuring the clonal subpopulation. There were also high levels of clonal diversity within habitats, suggesting frequent origins of habitat-specific clones. In contrast, diploid sexual individuals were proportionately more common in the shallow regions of the lake (where infection by trematode larvae is highest), and there was no significant spatial structure in the sexual subpopulation. We suggest that habitat specialization by clones, as well as parasite-mediated selection against common clones, are important factors affecting the structure of this mixed population of sexual and clonal snails.

Page Thumbnails

  • Thumbnail: Page 
1541
    1541
  • Thumbnail: Page 
1542
    1542
  • Thumbnail: Page 
1543
    1543
  • Thumbnail: Page 
1544
    1544
  • Thumbnail: Page 
1545
    1545
  • Thumbnail: Page 
1546
    1546
  • Thumbnail: Page 
1547
    1547
  • Thumbnail: Page 
1548
    1548