Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Developmental Stability, Fitness, and Trait Size in Laboratory Hybrids Between European Subspecies of the House Mouse

Paul Alibert, Fabienne Fel-Clair, Katerina Manolakou, Janice Britton-Davidian and Jean-Christophe Auffray
Evolution
Vol. 51, No. 4 (Aug., 1997), pp. 1284-1295
DOI: 10.2307/2411057
Stable URL: http://www.jstor.org/stable/2411057
Page Count: 12
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Developmental Stability, Fitness, and Trait Size in Laboratory Hybrids Between European Subspecies of the House Mouse
Preview not available

Abstract

The effects of hybridization on developmental stability and size of tooth characters were investigated in intersubspecific crosses between random-bred wild strains of the house mouse (Mus musculus domesticus and M. m. musculus). Fluctuating asymmetry (FA) and trait size were compared within and between parental, F1, backcross, and F2 hybrid groups. The relationship between FA and reproductive fitness within the F1 hybrids was also studied. The results indicated that both FA and character size levels differed significantly between the two subspecies. The F1 hybrids and the recombined groups (backcrosses and F2 hybrids) showed heterosis for both parameters. No significant differences in the FA of fertile and sterile F1 hybrid individuals were found. Comparison of the FA levels obtained in this study with those found in wild populations from the hybrid zone in Denmark showed that the levels of FA were lower in laboratory-bred samples than in the wild populations. This study provides further evidence that, in hybrids, the developmental processes underlying most of the morphological traits we studied benefit from a heterotic effect, despite the genomic incompatibilities between the two European house mice revealed by previous genetical and parasitological studies.

Page Thumbnails

  • Thumbnail: Page 
1284
    1284
  • Thumbnail: Page 
1285
    1285
  • Thumbnail: Page 
1286
    1286
  • Thumbnail: Page 
1287
    1287
  • Thumbnail: Page 
1288
    1288
  • Thumbnail: Page 
1289
    1289
  • Thumbnail: Page 
1290
    1290
  • Thumbnail: Page 
1291
    1291
  • Thumbnail: Page 
1292
    1292
  • Thumbnail: Page 
1293
    1293
  • Thumbnail: Page 
1294
    1294
  • Thumbnail: Page 
1295
    1295