Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Occurrence and Significance of Epistatic Variance for Quantitative Characters and Its Measurement in Haploids

A. Jonathan Shaw, B. S. Weir and Frank H. Shaw
Evolution
Vol. 51, No. 2 (Apr., 1997), pp. 348-353
DOI: 10.2307/2411106
Stable URL: http://www.jstor.org/stable/2411106
Page Count: 6
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Occurrence and Significance of Epistatic Variance for Quantitative Characters and Its Measurement in Haploids
Preview not available

Abstract

Epistatic genetic variance for quantitative traits may play an important role in evolution, but detecting epistasis in diploid organisms is difficult and requires complex breeding programs and very large sample sizes. We develop a model for detecting epistasis in organisms with a free-living haploid stage in their life cycles. We show that epistasis is indicated by greater variance among families of haploid progeny derived from individual diploids than among clonally replicated haploid sibs from the same sporophyte. Simulations show that the power to detect epistasis is linearly related to the number of sporophytes and the number of haploids per sporophyte in the dataset. We illustrate the model with data from growth variation among gametophytes of the moss, Ceratodon purpureus. The experiment failed to detect epistatic variance for biomass production, although there was evidence of additive variance.

Page Thumbnails

  • Thumbnail: Page 
348
    348
  • Thumbnail: Page 
349
    349
  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353