Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Allozymic Differentiation in Response to Laboratory Demographic Selection of Drosophila melanogaster

Denise J. Deckert-Cruz, Robert H. Tyler, Jacob E. Landmesser and Michael R. Rose
Evolution
Vol. 51, No. 3 (Jun., 1997), pp. 865-872
DOI: 10.2307/2411161
Stable URL: http://www.jstor.org/stable/2411161
Page Count: 8
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Allozymic Differentiation in Response to Laboratory Demographic Selection of Drosophila melanogaster
Preview not available

Abstract

Drosophila melanogaster populations that exhibit constrasting life histories as a result of laboratory selection were compared at several potentially relevant enzyme loci. Selection regimes included postponed reproduction, accelerated development, and intermediate generation time. Each selection regime was represented by fivefold replicated populations maintained for between 50 and 500 generations. For each population, allele frequencies were calculated from frequencies of electrophoretically distinguishable allozymes of alcohol dehydrogenase, α-glycerol-3-phosphate dehydrogenase, phosphoglucomutase, and CuZn-superoxide dismutase. Based on allozyme frequency changes consistent across replicate populations, two of the studied loci responded to both selection for postponed reproduction and selection for accelerated development. The responses to contrasting selection regimes were in opposing directions, suggesting antagonistic pleiotropy.

Page Thumbnails

  • Thumbnail: Page 
865
    865
  • Thumbnail: Page 
866
    866
  • Thumbnail: Page 
867
    867
  • Thumbnail: Page 
868
    868
  • Thumbnail: Page 
869
    869
  • Thumbnail: Page 
870
    870
  • Thumbnail: Page 
871
    871
  • Thumbnail: Page 
872
    872