Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Interacting Phenotypes and the Evolutionary Process: I. Direct and Indirect Genetic Effects of Social Interactions

Allen J. Moore, Edmund D. Brodie, III and Jason B. Wolf
Evolution
Vol. 51, No. 5 (Oct., 1997), pp. 1352-1362
DOI: 10.2307/2411187
Stable URL: http://www.jstor.org/stable/2411187
Page Count: 11
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Interacting Phenotypes and the Evolutionary Process: I. Direct and Indirect Genetic Effects of Social Interactions
Preview not available

Abstract

Interacting phenotypes are traits whose expression is affected by interactions with conspecifics. Commonly-studied interacting phenotypes include aggression, courtship, and communication. More extreme examples of interacting phenotypes-traits that exist exclusively as a product of interactions-include social dominance, intraspecific competitive ability, and mating systems. We adopt a quantitative genetic approach to assess genetic influences on interacting phenotypes. We partition genetic and environmental effects so that traits in conspecifics that influence the expression of interacting phenotypes are a component of the environment. When the trait having the effect is heritable, the environmental influence arising from the interaction has a genetic basis and can be incorporated as an indirect genetic effect. However, because it has a genetic basis, this environmental component can evolve. Therefore, to consider the evolution of interacting phenotypes we simultaneously consider changes in the direct genetic contributions to a trait (as a standard quantitative genetic approach would evaluate) as well as changes in the environmental (indirect genetic) contribution to the phenotype. We then explore the ramifications of this model of inheritance on the evolution of interacting phenotypes. The relative rate of evolution in interacting phenotypes can be quite different from that predicted by a standard quantitative genetic analysis. Phenotypic evolution is greatly enhanced or inhibited depending on the nature of the direct and indirect genetic effects. Further, unlike most models of phenotypic evolution, a lack of variation in direct genetic effects does not preclude evolution if there is genetic variance in the indirect genetic contributions. The available empirical evidence regarding the evolution of behavior expressed in interactions, although limited, supports the predictions of our model.

Page Thumbnails

  • Thumbnail: Page 
1352
    1352
  • Thumbnail: Page 
1353
    1353
  • Thumbnail: Page 
1354
    1354
  • Thumbnail: Page 
1355
    1355
  • Thumbnail: Page 
1356
    1356
  • Thumbnail: Page 
1357
    1357
  • Thumbnail: Page 
1358
    1358
  • Thumbnail: Page 
1359
    1359
  • Thumbnail: Page 
1360
    1360
  • Thumbnail: Page 
1361
    1361
  • Thumbnail: Page 
1362
    1362