Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Test of Interaction Between Genetic Markers That Affect Fitness in Aspergillus niger

J. A. G. M. de Visser, Rolf F. Hoekstra and Herman van den Ende
Evolution
Vol. 51, No. 5 (Oct., 1997), pp. 1499-1505
DOI: 10.2307/2411202
Stable URL: http://www.jstor.org/stable/2411202
Page Count: 7
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Test of Interaction Between Genetic Markers That Affect Fitness in Aspergillus niger
Preview not available

Abstract

In this paper we study whether and how a number of arbitrarily chosen marker mutations interact in their effect on fitness, which is relevant for our understanding of the evolution of sex. If epistasis is synergistic, the main function of sex may be to facilitate selection against deleterious mutations. We use strains of the filamentous fungus Aspergillus niger with variable combinations of marker mutations that have been obtained by isolating segregants from a diploid between a wild-type strain and a related strain carrying a marker mutation on each of its eight chromosomes. The marker mutations include five auxotrophic and two resistance mutations. As a measure of fitness the mycelium growth rate on supplemented medium has been used. The results suggest that the marker mutations have independent effects on fitness, and hence they do not support the deterministic mutation hypothesis of the evolution of sex. The apparent linear relationship between mutation number and log fitness is the result of interactions of opposite type (i.e., synergistic and antagonistic) that cancel each other's effect. However, due to an isolation bias caused by the fact that not all possible strains with many mutations could be isolated, the results may be relatively biased towards an antagonistic relationship between mutation number and log fitness.

Page Thumbnails

  • Thumbnail: Page 
1499
    1499
  • Thumbnail: Page 
1500
    1500
  • Thumbnail: Page 
1501
    1501
  • Thumbnail: Page 
1502
    1502
  • Thumbnail: Page 
1503
    1503
  • Thumbnail: Page 
1504
    1504
  • Thumbnail: Page 
1505
    1505