Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Latitudinal Variation of Wing: Thorax Size Ratio and Wing-Aspect Ratio in Drosophila melanogaster

Ricardo B. R. Azevedo, Avis C. James, Jennie McCabe and L. Partridge
Evolution
Vol. 52, No. 5 (Oct., 1998), pp. 1353-1362
DOI: 10.2307/2411305
Stable URL: http://www.jstor.org/stable/2411305
Page Count: 10
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Latitudinal Variation of Wing: Thorax Size Ratio and Wing-Aspect Ratio in Drosophila melanogaster
Preview not available

Abstract

In dipterans, the wing-beat frequency, and, hence, the lift generated, increases linearly with ambient temperature. If flight performance is an important target of natural selection, higher wing:thorax size ratio and wing-aspect ratio should be favored at low temperatures because they increase the lift for a given body weight. We investigated this hypothesis by examining wing:thorax size ratio and wing-aspect ratio in Drosophila melanogaster collected from wild populations along a latitudinal gradient and in their descendants reared under standard laboratory conditions. In a subset of lines, we also studied the phenotypic plasticity of these traits in response to temperature. To examine whether the latitudinal trends in wing:thorax size ratio and wing-aspect ratio could have resulted from a correlated response to latitudinal selection on wing area, we investigated the correlated responses of these characters in lines artificially selected for wing area. In both the geographic and the artificially selected lines, wing:thorax size ratio and wing-aspect ratio decreased in response to increasing temperature during development. Phenotypic plasticity for either trait did not vary among latitudinal lines or selective regimes. Wing:thorax size ratio and wing-aspect ratio increased significantly with latitude in field-collected flies. The cline in wing:thorax size ratio had a genetic component, but the cline in wing-aspect ratio did not. Artificial selection for increased wing area led to a statistically insignificant correlated increase in wing:thorax size ratio and a decrease in wing-aspect ratio. Our observations are consistent with the hypotheses that high wing-thorax size ratio and wing aspect ratio are per se selectively advantageous at low temperatures.

Page Thumbnails

  • Thumbnail: Page 
1353
    1353
  • Thumbnail: Page 
1354
    1354
  • Thumbnail: Page 
1355
    1355
  • Thumbnail: Page 
1356
    1356
  • Thumbnail: Page 
1357
    1357
  • Thumbnail: Page 
1358
    1358
  • Thumbnail: Page 
1359
    1359
  • Thumbnail: Page 
1360
    1360
  • Thumbnail: Page 
1361
    1361
  • Thumbnail: Page 
1362
    1362