Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Reactivity of synthetic Fe chelates with soils and soil components

Ana Álvarez-Fernández, Miguel A. Sierra and Juan J. Lucena
Plant and Soil
Vol. 241, No. 1, 10th International Symposium on Iron Nutrition and Interactions in Plants (April (I) 2002), pp. 129-137
Published by: Springer
Stable URL: http://www.jstor.org/stable/24122550
Page Count: 9
  • More info
  • Cite this Item
Reactivity of synthetic Fe chelates with soils and soil components
Preview not available

Abstract

The most effective and common Fe fertilisers in general are EDDHA and EDDHMA Fe chelates because they are highly stable ferric complexes in neutral and alkaline solutions. EDDHSA and EDDCHA iron chelates were introduced in the market recently. Commercial Fe chelates have two Fe fractions, chelated Fe and non-chelated Fe. The latter is bonded to by-products produced during the synthesis of the chelating agent. The effectiveness of Fe chelates depends on their ability to maintain Fe in the soil solution despite simultaneous equilibrium of Fe chelate with many cations, such as Ca2+. The main aim of this work was to test the possible agricultural use of EDDHSA and EDDCHA Fe chelates. The pH-Ca2+ effect on soluble and chelated Fe (pH ranging from 2 to 12) and the interaction of Fe chelates with soils and soil phases (ferrihydrite, acid peat, calcium carbonate and Ca montmorillonite) are presented. The results demonstrated that EDDHA, EDDHMA, EDDHSA and EDDCHA in solution remain fully associated with Fe from pH 4 to 9 despite competition with Ca. Among soil materials, ferrihydrite and acid peat retain both chelated and non-chelated Fe to the greatest extent. The type of chelating agent is a factor that affects chelated Fe availability in soil. FeEDDHA and FeEDDHMA were retained more by soil surfaces than FeEDDHSA and FeEDDCHA. Commercial Fe chelates present a large amount of soluble, non-chelated Fe and make Cu soluble in soils, which may be due to non-chelated Fe being displaced by Cu.

Page Thumbnails

  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137