Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Four years continuous record of CH 4 -exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany

K. Butterbach-Bahl and H. Papen
Plant and Soil
Vol. 240, No. 1 (March (I) 2002), pp. 77-90
Published by: Springer
Stable URL: http://www.jstor.org/stable/24122621
Page Count: 14
  • More info
  • Cite this Item
Four years continuous record of CH
          4
          -exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany
Preview not available

Abstract

In order to gain information about seasonal and interannual variations of CH4-fluxes at a spruce control site, a limed spruce site and a beech site of the Höglwald Forest, Bavaria, Germany, complete annual cycles of CH4-exchange between the soil and the atmosphere with 2-hourly resolution were followed for 4 consecutive years. The ranges of CH4 fluxes observed for the different sites were: +12.4 to -69.4 μg CH4 m-2 h-1 (spruce control site), +11.7 to -51.4 μg CH4 m-2 h-1 (limed spruce site), and -4.4 to -167.3 μg CH4 m-2 h-1 (beech site). Lowest rates of atmospheric CH4-uptake or even a weak net-emission of CH4 by the soils were observed during winter/spring times, whereas highest rates of CH4-uptake were always found in summer/spring. Over the entire observation period of 4 years, mean CH4-uptake rates were -1.82 kg CH4-C ha-1 yr-1 at the spruce control site, -1.31 kg CH4-C ha-1 yr-1 at the limed spruce site, and -4.84 kg CH4-C ha-1 yr-1 at the beech site. The results obtained in this study demonstrate that in view of the huge interannual variations in CH4-fluxes of approx. 1 kg CH4-C ha-1 yr-1, multiple year measurements of CH4-fluxes are necessary to accurately characterize the sink strength of temperate forest for atmospheric CH4. By comparison of CH4-fluxes measured at the spruce control site and the limed spruce site, a significant negative effect of forest floor liming on CH4-uptake could be demonstrated. Compared to the spruce stand, the beech stand showed on average approx. 3 times higher rates of atmospheric CH4-uptake, most likely due to pronounced differences between both sites with regard to the organic layer structure and bulk density of the mineral soil. Regression analysis between CH4-fluxes and environmental parameters revealed that at all sites the dominating factors regulating temporal variations of CH4 fluxes were soil moisture and soil temperature. Field measurements of CH4 concentrations in the soil profile and laboratory measurements of CH4-oxidation and CH4-production activity on soil samples taken from different soil depths showed that the CH4-flux at the Höglwald Forest sites is the net-result of simultaneous occurring production and consumption of CH4 within the soil. Highest CH4-oxidation activity was found in the uppermost centimeters of the mineral soil, whereas highest potential CH4-production activity was found in the organic layer.

Page Thumbnails

  • Thumbnail: Page 
77
    77
  • Thumbnail: Page 
78
    78
  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85
  • Thumbnail: Page 
86
    86
  • Thumbnail: Page 
87
    87
  • Thumbnail: Page 
88
    88
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90