Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status

Stuart J. Pearse, Erik J. Veneklaas, Greg R. Cawthray, Mike D. A. Bolland and Hans Lambers
Plant and Soil
Vol. 288, No. 1/2 (2006), pp. 127-139
Published by: Springer
Stable URL: http://www.jstor.org/stable/24125442
Page Count: 13
  • More info
  • Cite this Item
Preview not available
Preview not available

Abstract

The capacity of plant roots to increase their carboxylate exudation at a low plant phosphorus (P) status is an adaptation to acquire sufficient P at low soil P availability. Our objective was to compare crop species in their adaptive response to a low-P availability, in order to gain knowledge to be used for improving crop P-acquisition efficiency from soils that are low in P or that have a high capacity to retain P. In the present screening study we compared 13 crop species, grown in sand at either 3 or 300 μM of P, and measured root mass ratio, cluster-root development, rhizosphere pH and carboxylate composition of root exudates. Root mass ratio decreased with increasing P supply for Triticum aestivum L., Brassica napus L., Cicer arietinum L. and Lens culinaris Medik., and increased only for Pisum sativum L., while the Lupinus species and Vicia faba L. were not responsive. Lupinus species that had the potential to produce root clusters either increased or decreased biomass allocation to clusters at 300 μM of P compared with allocation at 3 μM of P. All Lupinus species acidified their rhizosphere more than other species did, with average pH decreasing from 6.7 (control) to 4.3 for Lupinus pilosus L. and 5.9 for Lupinus atlanticus L.; B. napus maintained the most alkaline rhizosphere, averaging 7.4 at 300 μM of P. Rhizosphere carboxylate concentrations were lowest for T. aestivum, B. napus, V. faba, and L. culinaris than for the other species. Exuded carboxylates were mainly citrate and malate for all species, with the exception of L. culinaris and C. arietinum, which produced mainly citrate and malonate. Considerable variation in the concentration of exuded carboxylates and protons was found, even with a genus. Cluster-root forming species did not invariably have the highest concentrations of rhizosphere carboxylates. Lupinus species varied both in P-uptake and in the sensitivity of their cluster-root development to external P supply. Given the carbon cost of cluster roots, a greater plasticity in their formation and exudation (i.e. reduced investment in cluster roots and exudation at higher soil P, a negative feedback response) is a desirable trait for agricultural species that may have variable access to readily available P.

Page Thumbnails

  • Thumbnail: Page 
[127]
    [127]
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
138
    138
  • Thumbnail: Page 
139
    139