Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Soil microbial communities from an elevational cline differ in their effect on conifer seedling growth

Cameron Wagg, Brian C. Husband, D. Scott Green, Hugues B. Massicotte and R. Larry Peterson
Plant and Soil
Vol. 340, No. 1/2 (2011), pp. 491-504
Published by: Springer
Stable URL: http://www.jstor.org/stable/24130828
Page Count: 14
  • More info
  • Cite this Item
Preview not available
Preview not available

Abstract

Sub-alpine environments consist of altitudinal gradients associated with dramatic changes in plant growth and community composition, but the role of soil feedbacks and microbe interactions is largely unknown. Here, we examine the influence of the overall soil microbial community, with a focus on ectomycorrhizal and dark septate endophytic root colonizing fungi, from low, mid, and high elevations on the growth of Pinus contorta and Picea glauca × engelmannii. The influence of the soil microbial community was tested on seedlings from the same three elevations in order to determine 'home' versus 'away' effects on conspecifics of differing elevations. The low elevation soil was the most fertile and harbored a soil microbial community with an overall negative effect on seedling growth. In contrast, the high elevation soil was the least fertile and had a microbial community that enhanced seedling growth. However, only the soil microbial community in the highest elevation soil resulted in a stronger influence on the native P. contorta seedlings than seedlings originating from lower elevations. Despite the overall influence of the soil microbial community, ectomycorrhizal colonization was significantly correlated with P. glauca × engelmannii growth rates, but colonization by dark septate endophytes showed no relationship with seedling growth. The results provide evidence that plant—soil microbial community relationships are dependent on soil environment. Moreover, our results provide further support for the importance of soil microbes in facilitating seedling growth toward the edge of their elevational range.

Page Thumbnails

  • Thumbnail: Page 
[491]
    [491]
  • Thumbnail: Page 
492
    492
  • Thumbnail: Page 
493
    493
  • Thumbnail: Page 
494
    494
  • Thumbnail: Page 
495
    495
  • Thumbnail: Page 
496
    496
  • Thumbnail: Page 
497
    497
  • Thumbnail: Page 
498
    498
  • Thumbnail: Page 
499
    499
  • Thumbnail: Page 
500
    500
  • Thumbnail: Page 
501
    501
  • Thumbnail: Page 
502
    502
  • Thumbnail: Page 
503
    503
  • Thumbnail: Page 
504
    504