If you need an accessible version of this item please contact JSTOR User Support

Gene Trees and Species Trees: Molecular Systematics as One-Character Taxonomy

Jeff J. Doyle
Systematic Botany
Vol. 17, No. 1 (Jan. - Mar., 1992), pp. 144-163
DOI: 10.2307/2419070
Stable URL: http://www.jstor.org/stable/2419070
Page Count: 20
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Gene Trees and Species Trees: Molecular Systematics as One-Character Taxonomy
Preview not available

Abstract

Reconstruction of phylogenies from molecular data has become an important and increasingly common approach in systematics. The product of such studies is a gene tree, hypothesizing relationships among genes or genomes. This gene tree may be fundamentally incongruent with the true species phylogeny, due to various biological phenomena such as introgression, lineage sorting, or mistaken orthology. In such circumstances all of the gene tree characters defining the relationships of molecular taxa (haplotypes) may be necessarily correlated, and the gene or genome may behave as a single species tree character. In these circumstances robustness of the gene hypothesis is meaningless as a measure of confidence in the species phylogenetic hypothesis. Incongruence between a phylogenetic hypothesis based on numerous, presumably independent, non-molecular characters and a single gene tree should not be assumed to be due to noise in non-molecular data. As with other characters, a character phylogeny, in this case a gene tree, can be tested best by a parsimony analysis in which other characters are included. If independence of molecular characters is assumed, then each is an equivalent phylogenetic hypothesis, as is each non-molecular character, leading to the suggestion that direct combination is appropriate. Swamping becomes an issue when a large molecular data set may be behaving as a single character. To alleviate this problem, a gene tree may be treated as a single multistate character, either ordered or unordered, and included with non-molecular data to obtain a globally parsimonious result. An example is given using published molecular and non-molecular data from the Asteraceae.

Page Thumbnails

  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161
  • Thumbnail: Page 
162
    162
  • Thumbnail: Page 
163
    163