Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

DETECTING DIFFERENTIALLY EXPRESSED GENES USING CALIBRATED BAYES FACTORS

Fang Yu, Ming-Hui Chen and Lynn Kuo
Statistica Sinica
Vol. 18, No. 2 (April 2008), pp. 783-802
Stable URL: http://www.jstor.org/stable/24308507
Page Count: 20
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
DETECTING DIFFERENTIALLY EXPRESSED GENES USING CALIBRATED BAYES FACTORS
Preview not available

Abstract

A common interest in microarray data analysis is to identify genes having changes in expression values between different biological conditions. The existing methods include using two-sample t-statistics, modified t-statistics (SAM), Bayesian t-statistics (Cyber-T), semiparametric hierarchical Bayesian models, and nonparametric permutation tests. All these methods essentially compare two population means. Unlike these methods, we consider using Bayes factors to compare gene expression levels that allows us to compare two population distributions. To adapt the use of Bayes factors to microarray data, we propose a new calibration approach that weighs two types of prior predictive error probabilities differently for each gene and, at the same time, controls the overall error rate for all genes. Moreover, a new gene selection algorithm based on the calibration approach is developed and its properties are examined. The proposed method is shown to have a smaller false discovery rate (FDR) and a smaller false non-discovery rate (FNDR) than several existing methods in several simulations. Finally, a data set from an affymetrix microarray experiment to identify genes associated with the mature osteoblast differentiation is used to further illustrate the proposed methodology.

Page Thumbnails

  • Thumbnail: Page 
[783]
    [783]
  • Thumbnail: Page 
784
    784
  • Thumbnail: Page 
785
    785
  • Thumbnail: Page 
786
    786
  • Thumbnail: Page 
787
    787
  • Thumbnail: Page 
788
    788
  • Thumbnail: Page 
789
    789
  • Thumbnail: Page 
790
    790
  • Thumbnail: Page 
791
    791
  • Thumbnail: Page 
792
    792
  • Thumbnail: Page 
793
    793
  • Thumbnail: Page 
794
    794
  • Thumbnail: Page 
795
    795
  • Thumbnail: Page 
796
    796
  • Thumbnail: Page 
797
    797
  • Thumbnail: Page 
798
    798
  • Thumbnail: Page 
799
    799
  • Thumbnail: Page 
800
    800
  • Thumbnail: Page 
801
    801
  • Thumbnail: Page 
802
    802