Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

MODEL SELECTION FOR CORRELATED DATA WITH DIVERGING NUMBER OF PARAMETERS

Hyunkeun Cho and Annie Qu
Statistica Sinica
Vol. 23, No. 2 (April 2013), pp. 901-927
Stable URL: http://www.jstor.org/stable/24310367
Page Count: 27
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
MODEL SELECTION FOR CORRELATED DATA WITH DIVERGING NUMBER OF PARAMETERS
Preview not available

Abstract

High-dimensional longitudinal data arise frequently in biomedical and genomic research. It is important to select relevant covariates when the dimension of the parameters diverges as the sample size increases.We propose the penalized quadratic inference function to perform model selection and estimation simultaneously in the framework of a diverging number of regression parameters. The penalized quadratic inference function can easily take correlation information from clustered data into account, yet it does not require specifying the likelihood function. This is advantageous compared to existing model selection methods for discrete data with large cluster size. In addition, the proposed approach enjoys the oracle property; it is able to identify non-zero components consistently with probability tending to 1, and any finite linear combination of the estimated non-zero components has an asymptotic normal distribution. We propose an efficient algorithm by selecting an effective tuning parameter to solve the penalized quadratic inference function. Monte Carlo simulation studies have the proposed method selecting the correct model with a high frequency and estimating covariate effects accurately even when the dimension of parameters is high. We illustrate the proposed approach by analyzing periodontal disease data.

Page Thumbnails

  • Thumbnail: Page 
[901]
    [901]
  • Thumbnail: Page 
902
    902
  • Thumbnail: Page 
903
    903
  • Thumbnail: Page 
904
    904
  • Thumbnail: Page 
905
    905
  • Thumbnail: Page 
906
    906
  • Thumbnail: Page 
907
    907
  • Thumbnail: Page 
908
    908
  • Thumbnail: Page 
909
    909
  • Thumbnail: Page 
910
    910
  • Thumbnail: Page 
911
    911
  • Thumbnail: Page 
912
    912
  • Thumbnail: Page 
913
    913
  • Thumbnail: Page 
914
    914
  • Thumbnail: Page 
915
    915
  • Thumbnail: Page 
916
    916
  • Thumbnail: Page 
917
    917
  • Thumbnail: Page 
918
    918
  • Thumbnail: Page 
919
    919
  • Thumbnail: Page 
920
    920
  • Thumbnail: Page 
921
    921
  • Thumbnail: Page 
922
    922
  • Thumbnail: Page 
923
    923
  • Thumbnail: Page 
924
    924
  • Thumbnail: Page 
925
    925
  • Thumbnail: Page 
926
    926
  • Thumbnail: Page 
927
    927