Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Phosphorus supply enhances the response of legumes to elevated CO 2 (FACE) in a phosphorus-deficient vertisol

Jian Jin, Caixian Tang, Roger Armstrong and Peter Sale
Plant and Soil
Vol. 358, No. 1/2 (September 2012), pp. 91-104
Published by: Springer
Stable URL: http://www.jstor.org/stable/24370221
Page Count: 14
  • More info
  • Cite this Item
Preview not available
Preview not available

Abstract

Background & aims Understanding the mechanism of how phosphorus (P) regulates the response of legumes to elevated CO2 (eCO2) is important for developing P management strategies to cope with increasing atmospheric CO2 concentration. This study aimed to explore this mechanism by investigating interactive effects of CO2 and P supply on root morphology, nodulation and soil P fractions in the rhizosphere. Methods A column experiment was conducted under ambient (350 ppm) (aCO2) and eCO2 (550 ppm) in a free air CO2 enrichment (FACE) system. Chickpea and field pea were grown in a P-deficient Vertisol with P addition of 0–16 mg Pkg−1. Results Increasing P supply increased plant growth and total P uptake with the increase being greater under eCO2 than under aCO2. Elevated CO2 increased root biomass and length, on average, by 16 % and 14 %, respectively. Nodule biomass increased by 46 % in response to eCO2 at 16 mg P kg−1, but was not affected by eCO2 at no P supply. Total P uptake was correlated with root length while N uptake correlated with nodule number and biomass regardless of CO2 level. Elevated CO2 increased the NaOH-extractable organic P by 92 % when 16 mg P kg−1 was applied. Conclusion The increase in P and N uptake and nodule number under eCO2 resulted from the increased biomass production, rather than from changes in specific root-absorbing capability or specific nodule function. Elevated CO2 appears to enhance P immobilization in the rhizosphere.

Page Thumbnails

  • Thumbnail: Page 
[91]
    [91]
  • Thumbnail: Page 
92
    92
  • Thumbnail: Page 
93
    93
  • Thumbnail: Page 
94
    94
  • Thumbnail: Page 
95
    95
  • Thumbnail: Page 
96
    96
  • Thumbnail: Page 
97
    97
  • Thumbnail: Page 
98
    98
  • Thumbnail: Page 
99
    99
  • Thumbnail: Page 
100
    100
  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103
  • Thumbnail: Page 
104
    104