Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Effects of 2,3,5-Triiodobenzoic Acid on the Structure of Soybean Leaves

Bernard F. Krause and Norman H. Boke
American Journal of Botany
Vol. 55, No. 9 (Oct., 1968), pp. 1074-1079
Stable URL: http://www.jstor.org/stable/2440475
Page Count: 6
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Effects of 2,3,5-Triiodobenzoic Acid on the Structure of Soybean Leaves
Preview not available

Abstract

The effects of 2,3,5-triiodobenzoic acid (TIBA) on soybean leaves (Glycine max. [L.] Merrill 'Harosoy') include thickening with intensification of color and some raised intercostal regions, giving a wrinkled appearance. These effects are not restricted to early stages of leaf development but are pronounced during and after unfolding of the leaf. Proliferation of tracheary elements, increased procambial activity, and hypertrophy of bundle sheath extension cells occurred in the leaflet midvein of the youngest expanded leaf treated with 50 ppm or 100 ppm of TIBA. The youngest treated leaves exhibited differential growth rates and expansion within the palisade and spongy layers. Hypertrophy of spongy cells in these leaves occurred independently or simultaneously with elongation of the upper and lower palisade layers. The palisade and spongy tissues had undergone cell division and expansion at a greater pace than the epidermal layers. This, along with hypertrophy in the bundle sheath extension cells, would explain the wrinkled appearance of the lamina. The treated leaf became thicker than the control as a result of the increased number of cells in the spongy layer and elongation in the palisade layer. The observed aberrations in leaf structure suggest that TIBA interferes with some auxin-translocating system within the plant.

Page Thumbnails

  • Thumbnail: Page 
1074
    1074
  • Thumbnail: Page 
1075
    1075
  • Thumbnail: Page 
1076
    1076
  • Thumbnail: Page 
1077
    1077
  • Thumbnail: Page 
1078
    1078
  • Thumbnail: Page 
1079
    1079