Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Control of Shoot-Rhizome Dimorphism in the Woody Monocotyledon, Cordyline (Agavaceae)

Jack B. Fisher
American Journal of Botany
Vol. 59, No. 10 (Nov. - Dec., 1972), pp. 1000-1010
Stable URL: http://www.jstor.org/stable/2441483
Page Count: 11
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Control of Shoot-Rhizome Dimorphism in the Woody Monocotyledon, Cordyline (Agavaceae)
Preview not available

Abstract

In Cordyline terminalis negatively geotropic leafy shoots and positively geotropic rhizomes develop from single axillary buds on either shoots or rhizomes. All axillary buds have similar morphogenetic potential when released from apical dominance. Experiments in which the orientation of the apex is changed, organs removed, or growth regulators applied indicate that after a rhizome is initiated, it is maintained as a rhizome by auxin originating in the leafy shoot. When auxin levels are lowered by changes in the orientation of the axis or shoot removal, the rhizome apex becomes a shoot apex, which appears to be the stable state of the actively growing apex. Benzyl adenine when applied exogenously to the apex or lateral buds has the same effect as lowering the auxin level. Gibberellic acid has no effect on the apex or lateral buds. High levels of exogenous naphthaleneacetic acid cause bud release and development of rhizomes from previously inhibited axillary buds of the shoot. However, it was not possible to convert a shoot apex into a rhizome apex by auxin treatment. It is suggested that the release of buds on the lower side of horizontal branches and of buds directly above a stem girdle is caused by high auxin levels on the lower side or distal to the girdle. The experimental results are discussed in relation to naturally occurring shoot-rhizome dimorphism.

Page Thumbnails

  • Thumbnail: Page 
1000
    1000
  • Thumbnail: Page 
1001
    1001
  • Thumbnail: Page 
1002
    1002
  • Thumbnail: Page 
1003
    1003
  • Thumbnail: Page 
1004
    1004
  • Thumbnail: Page 
1005
    1005
  • Thumbnail: Page 
1006
    1006
  • Thumbnail: Page 
1007
    1007
  • Thumbnail: Page 
1008
    1008
  • Thumbnail: Page 
1009
    1009
  • Thumbnail: Page 
1010
    1010