Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Osmunda wehrii, a New Species Based on Petrified Rhizomes from the Miocene of Washington

Charles N. Miller, Jr.
American Journal of Botany
Vol. 69, No. 1 (Jan., 1982), pp. 116-121
Stable URL: http://www.jstor.org/stable/2442836
Page Count: 6
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Osmunda wehrii, a New Species Based on Petrified Rhizomes from the Miocene of Washington
Preview not available

Abstract

Silicified rhizomes from Miocene strata near Yakima, Washington represent a new species of Osmunda. The stems are 8-13 mm in diameter and are surrounded by a thick sheath of adherent leaf bases, each of which shows stipular expansions typical of the Osmundaceae. The new species has an ectophloic siphonostele in which the xylem cylinder is dissected by leaf gaps with 12-14 strands being visible in a given stem cross section. Such sections also show 12-16 leaf traces in the cortex. The xylem of each leaf trace diverges from the xylem cylinder of the stem as an adaxially concave strand with its protoxylem organized into a single medial adaxial cluster. Initial bifurcation of the leaf-trace protexylem occurs as the leaf trace passes through the outer cortex of the stem. In the basal part of the stipular region of the petiole base, thick-walled fibers form an arch on the abaxial side of the sclerenchyma ring around the petiolar bundle. This arch persists throughout most of the length of the stipular region, with the thick-walled fibers becoming reorganized into two lateral masses in the distal part of the stipular region. Similar thick-walled fibers form an elongate strip of tissue in each wing of the stipule along with several small clusters scattered near the sclerenchyma ring. The new species belongs to the subgenus Osmunda and shows that during the Neogene, the latter existed as a group of closely related species much as it does today. Furthermore, Osmunda wehrii combines features of the modern O. regalis, O. japonica, and O. lancea with those of O. claytoniana and thus supports the inclusion of the latter species in the subgenus Osmunda.

Page Thumbnails

  • Thumbnail: Page 
116
    116
  • Thumbnail: Page 
117
    117
  • Thumbnail: Page 
118
    118
  • Thumbnail: Page 
119
    119
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121