Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Genetic Variation and Population Structure in the Fern Blechnum spicant (Blechnaceae) from Western North America

Pamela S. Soltis and Douglas E. Soltis
American Journal of Botany
Vol. 75, No. 1 (Jan., 1988), pp. 37-44
Stable URL: http://www.jstor.org/stable/2443903
Page Count: 8
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Genetic Variation and Population Structure in the Fern Blechnum spicant (Blechnaceae) from Western North America
Preview not available

Abstract

Population genetic structure in the homosporous fern Blechnum spicant was analyzed in six populations from western North America. Each population was divided into approximately 10 m by 10 m subpopulations, and genetic variation within and among subpopulations was compared using enzyme electrophoresis and F statistics. These analyses indicated that there was no evidence of genetic structure in four of the six populations examined. However, significant genetic heterogeneity among subpopulations was observed for the other two populations. The genetic structure of these populations may be attributable, in part, to family structure resulting from high rates of intragametophytic selfing and/or spatial patchiness in the distribution of individuals due to limited habitat availability in these areas. Outcrossing populations of B. spicant generally lack genetic structure, whereas the most highly inbreeding population maintains significant genetic structure. The information obtained in this investigation of population genetic structure in Blechnum spicant is consistent with data for angiosperms and gymnosperms. It appears that the outcrossing mating system and effective mechanism of spore dispersal in B spicant may account for the general lack of genetic structure within populations of this species.

Page Thumbnails

  • Thumbnail: Page 
37
    37
  • Thumbnail: Page 
38
    38
  • Thumbnail: Page 
39
    39
  • Thumbnail: Page 
40
    40
  • Thumbnail: Page 
41
    41
  • Thumbnail: Page 
42
    42
  • Thumbnail: Page 
43
    43
  • Thumbnail: Page 
44
    44