Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Population Structure in Zamia debilis (Zamiaceae). I. Size Classes, Leaf Phenology, and Leaf Turnover

Vivian Negrón-Ortiz and Gary J. Breckon
American Journal of Botany
Vol. 76, No. 6 (Jun., 1989), pp. 891-900
Stable URL: http://www.jstor.org/stable/2444545
Page Count: 10
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Population Structure in Zamia debilis (Zamiaceae). I. Size Classes, Leaf Phenology, and Leaf Turnover
Preview not available

Abstract

Population structure, leaf phenology and leaf turnover were followed over a 29-month period in Zamia debilis L.f. ex Aiton (Zamiaceae), an understory species in the Cambalache Forest in northern Puerto Rico. It was not possible to determine plant age or to measure the subterranean stems; size classes based on leaf number and leaf x leaflet number indices were used to determine population structure. Despite seasonal and year to year fluctuations in leaf number at the individual and population level, population profiles remained relatively constant. At any one time, over 50% of the population was composed of unbranched individuals with one or two leaves. Only 7% of the plants were branched. Plants with seven or more leaves comprised at a maximum 8% of the population, but accounted for 28% of the total foliage. Size classes based on leaf number and on a leaf x leaflet index gave approximately reverse J-shaped curves typical of trees with shade tolerant seedlings and saplings. New leaves emerged throughout the year, with a peak at the beginning of the rainy season in May or June and lowest production during the dry months of February through April. Average leaf life expectancy was approximately 2.3 years. Leaf death occurred over an extended period of time by the loss of individual leaflets. Patterns in leaf production and loss differed between few- and many-leaved plants. On the average, as the number of mature leaves on a plant increased, time between emergence of new leaves decreased. In many-leaved plants more than one event of new leaf emergence per year was common. Individuals with one to three mature leaves and individuals with four or more mature leaves differed in their response to water stress: few-leaved plants generally reduced the rate of new leaf production and retained old leaves longer. Plants with more than three leaves continued to produce new leaves, but the rate of leaf mortality increased so that most had a net leaf loss. There was no evidence that leaf emergence or retention were affected by cone production or seed maturation.

Page Thumbnails

  • Thumbnail: Page 
891
    891
  • Thumbnail: Page 
892
    892
  • Thumbnail: Page 
893
    893
  • Thumbnail: Page 
894
    894
  • Thumbnail: Page 
895
    895
  • Thumbnail: Page 
896
    896
  • Thumbnail: Page 
897
    897
  • Thumbnail: Page 
898
    898
  • Thumbnail: Page 
899
    899
  • Thumbnail: Page 
900
    900
Part of Sustainability