Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Interactions between Crown Structure and Light Environment in Five Rain Forest Piper Species

Robin L. Chazdon, Kimberlyn Williams and Christopher B. Field
American Journal of Botany
Vol. 75, No. 10 (Oct., 1988), pp. 1459-1471
Stable URL: http://www.jstor.org/stable/2444696
Page Count: 13
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Interactions between Crown Structure and Light Environment in Five Rain Forest Piper Species
Preview not available

Abstract

Measurements of light variation among leaves within crowns of five Piper species were compared with estimates of spatial variation in light within understory, forest edge, and clearing habitats to estimate the extent to which crown structure contributes to variation in leaf light environment. Daily photon flux density (PFD) varied greatly within and among crowns. Coefficients of variation for daily PFD among sensors within a single crown ranged from 26 to 79%. Within a single crown located in a clearing, the range in daily PFD among leaves was nearly as great as the range over the entire sample of plants. In the understory, localized sunfleck activity contributed to a high degree of spatial variation in instantaneous and total PFD among leaves within individual crowns. Much of the microsite variation in sunfleck activity, however, reflected environmental conditions within the understory habitat. Within an array of sensors placed next to Piper crowns in the understory, correlations were poor for light sensors spaced only 0.2 m apart, and only 8% of the variance in light readings was explained by measurements made 0.5 m away. In the clearing habitats, microsite heterogeneity among leaves was more strongly influenced by leaf positions within crowns and leaf angles than by spatial heterogeneity within the habitat.

Page Thumbnails

  • Thumbnail: Page 
1459
    1459
  • Thumbnail: Page 
1460
    1460
  • Thumbnail: Page 
1461
    1461
  • Thumbnail: Page 
1462
    1462
  • Thumbnail: Page 
1463
    1463
  • Thumbnail: Page 
1464
    1464
  • Thumbnail: Page 
1465
    1465
  • Thumbnail: Page 
1466
    1466
  • Thumbnail: Page 
1467
    1467
  • Thumbnail: Page 
1468
    1468
  • Thumbnail: Page 
1469
    1469
  • Thumbnail: Page 
1470
    1470
  • Thumbnail: Page 
1471
    1471