Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Tree Seedling Emergence on Interactive Temperature and Moisture Gradients and in Patches of Old-Field Vegetation

Philip J. Burton and F. A. Bazzaz
American Journal of Botany
Vol. 78, No. 1 (Jan., 1991), pp. 131-149
Stable URL: http://www.jstor.org/stable/2445236
Page Count: 19
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Tree Seedling Emergence on Interactive Temperature and Moisture Gradients and in Patches of Old-Field Vegetation
Preview not available

Abstract

Seeds of tree species commonly invading old-fields (Fraxinus americana, Gleditsia triacanthos, Morus rubra, Platanus occidentalis, and Prunus serotina) were germinated at eight temperatures from 5 C to 40 C, with six moisture levels (2% to 18% gravimetric moisture content) at each temperature. For most species, total seedling emergence and emergence rate exhibited approximate bivariate Gaussian response surfaces. Emergence of all species, except Gleditsia, was much more sensitive to differences in temperature than to differences in moisture. Species differed considerably in their response breadths across the interactive gradients, with moisture response bearing little relationship to temperature response. Seeds of Acer saccharum, Crataegus mollis, Fraxinus americana, Gleditsia triacanthos, Morus rubra, and Prunus serotina were sown into old-field vegetation patches dominated by eight different plant species, across three different soils. Acer and Morus emergence exhibited no significant differences among vegetation patches. Emergence of other tree species differed among patch types, but identity of the vegetation (often early successional) most conducive to emergence typically varied from year to year. Emergence of most species responded more strongly to vegetation than to soil series. High Fraxinus and Prunus emergence was associated with dampened temperature ranges, while high Crataegus emergence was associated with low amounts of plant litter. Despite great variability, vegetation differences can predict tree seedling emergence better than do year-to-year or soil differences. Extrapolations from the laboratory experiments predicted approximate levels of overall seedling emergence in the field, but prevailing temperatures and moisture differences among plant neighborhoods alone were not sufficient to explain observed differences in seedling emergence among these patches.

Page Thumbnails

  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
138
    138
  • Thumbnail: Page 
139
    139
  • Thumbnail: Page 
140
    140
  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142
  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
Part of Sustainability