Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Evolution of the Streptanthus glandulosus Complex (Cruciferae): Genetic Divergence and Gene Flow in Serpentine Endemics

Michael S. Mayer, Pamela S. Soltis and Douglas E. Soltis
American Journal of Botany
Vol. 81, No. 10 (Oct., 1994), pp. 1288-1299
Stable URL: http://www.jstor.org/stable/2445405
Page Count: 12
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Evolution of the Streptanthus glandulosus Complex (Cruciferae): Genetic Divergence and Gene Flow in Serpentine Endemics
Preview not available

Abstract

An analysis of the levels and distribution of allozyme variation in the Streptanthus glandulosus species complex was undertaken to test paradigms of speciation processes in the context of serpentine endemism. Electrophoretic analysis of 21 putative enzyme loci in 1,224 individuals representing 56 populations revealed extensive intrapopulational variation and interpopulational divergence. Estimates of gene flow among populations within taxa are typically lower than is theoretically needed to counteract the effects of genetic drift (i.e., Nm values are below 0.5), suggesting that drift may play a significant role in the evolution of the complex. A cluster analysis of genetic identities between populations using UPGMA demonstrates geographically structured groupings, some of which include neighboring populations of different taxa. Moreover, the genetic identity between two populations is correlated with the distance by which they are separated. The results are consistent with a hypothesis of a paleoendemic origin of the complex. The ancestor of the complex (perhaps S. glandulosus ssp. glandulosus) probably was formerly distributed more continuously across serpentine and nonserpentine habitat throughout its range. Elimination of the nonserpentine populations allowed regional and population-level divergence, following a model of geographic speciation.

Page Thumbnails

  • Thumbnail: Page 
1288
    1288
  • Thumbnail: Page 
1289
    1289
  • Thumbnail: Page 
1290
    1290
  • Thumbnail: Page 
1291
    1291
  • Thumbnail: Page 
1292
    1292
  • Thumbnail: Page 
1293
    1293
  • Thumbnail: Page 
1294
    1294
  • Thumbnail: Page 
1295
    1295
  • Thumbnail: Page 
1296
    1296
  • Thumbnail: Page 
1297
    1297
  • Thumbnail: Page 
1298
    1298
  • Thumbnail: Page 
1299
    1299