Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Identification of an Allelopathic Compound from Ailanthus altissima (Simaroubaceae) and Characterization of its Herbicidal Activity

Rod M. Heisey
American Journal of Botany
Vol. 83, No. 2 (Feb., 1996), pp. 192-200
Stable URL: http://www.jstor.org/stable/2445938
Page Count: 9
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Identification of an Allelopathic Compound from Ailanthus altissima (Simaroubaceae) and Characterization of its Herbicidal Activity
Preview not available

Abstract

Aqueous extracts of Ailanthus altissima bark and foliage were previously shown to be toxic to other plants. Using bioassay-directed fractionation, I isolated the phytotoxic compound from A. altissima root bark and identified it to be ailanthone, a quassinoid compound having molecular mass of 376. Ailanthone was highly phytotoxic, with concentrations of 0.7 ml/L causing 50% inhibition of radicle elongation in a standardized bioassay with garden cress (Lepidium sativum) seeds. Ailanthone exhibited potent pre- and postemergence herbicidal activity in greenhouse trials. Postemergence activity was especially striking; even the lowest application rate (0.5 kg/ha) caused complete mortality of five of the seven plant species tested within 5 d of treatment. In contrast, the highest application rate (8 kg/ha) did not cause any detectable injury to A. altissima seedlings, indicating the presence of a protective mechanism in the producer species to prevent autotoxicity. Ailanthone was rapidly detoxified in field soil as a result of microbial activity. Applications of ailanthone equivalent to 0.5 and 4.0 kg/ha completely lost their phytotoxicity within ≤5 d when incubated in the presence of nonsterile soil. When incubated with sterile soil under identical conditions, however, ailanthone remained highly phytotoxic throughout the 21-d duration of the investigation. The high level of postemergence herbicidal activity in conjunction with its rapid biodegradation in soil suggest ailanthone may have potential for development as a natural-product herbicide.

Page Thumbnails

  • Thumbnail: Page 
192
    192
  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194
  • Thumbnail: Page 
195
    195
  • Thumbnail: Page 
196
    196
  • Thumbnail: Page 
197
    197
  • Thumbnail: Page 
198
    198
  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200