Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Molecular Genetics of Growth and Development in Populus (Salicaceae). V. Mapping Quantitative Trait Loci Affecting Leaf Variation

R. Wu, H. D. Bradshaw, Jr. and R. F. Stettler
American Journal of Botany
Vol. 84, No. 2 (Feb., 1997), pp. 143-153
Stable URL: http://www.jstor.org/stable/2446076
Page Count: 11
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Molecular Genetics of Growth and Development in Populus (Salicaceae). V. Mapping Quantitative Trait Loci Affecting Leaf Variation
Preview not available

Abstract

We examined the genetic variation of leaf morphology and development in the 2-yr-old replicated plantation of an interspecific hybrid pedigree of Populus trichocarpa T. & G. and P. deltoides Marsh. via both molecular and quantitative genetic methods. Leaf traits chosen were those that show pronounced differences between the original parents, including leaf size, shape, orientation, color, structure, petiole size, and petiole cross section. Leaves were sampled from the current terminal, proleptic, and sylleptic branches. In the F2 generation, leaf traits were all significantly different among genotypes, but with significant effects due to genotype x crown-position interaction. Variation in leaf pigmentation, petiole length, and petiole length proportion appeared to be under the control of few quantitative trait loci (QTLs). More QTLs were associated with single leaf area, leaf shape, lamina angle, abaxial color, and petiole flatness, and in these traits the number of QTLs varied among crown positions. In general, the estimates of QTL numbers from Wright's biometric method were close to those derived from molecular markers. For those traits with few underlying QTLs, a single marker interval could explain from 30 to 60% of the observed phenotypic variance. For multigenic traits, certain markers contributed more substantially to the observed variation than others. Genetic cluster analysis showed developmentally related traits to be more strongly associated with each other than with unrelated traits. This finding was also supported by the QTL mapping. For example, the same chromosomal segment of linkage group L seemed to account for 20% of the phenotypic variation of all dimension-related traits, leaf size, petiole length, and midrib angle. In both traits, the P. deltoides alleles had positive effects and were dominant to the P. trichocarpa alleles. Similar relationships were also found for lamina angle, abaxial greenness, and petiole flatness.

Page Thumbnails

  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153