Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Developmental Analysis of Teosinte glume architecture1: A Key Locus in the Evolution of Maize (Poaceae)

Jane E. Dorweiler and John Doebley
American Journal of Botany
Vol. 84, No. 10 (Oct., 1997), pp. 1313-1322
Stable URL: http://www.jstor.org/stable/2446130
Page Count: 10
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Developmental Analysis of Teosinte glume architecture1: A Key Locus in the Evolution of Maize (Poaceae)
Preview not available

Abstract

A key event in the evolution of maize from teosinte was a reduction in the cupulate fruitcase and softening of the glumes, which increased the accessibility of kernels for harvest. The teosinte glume architecture1 (tga1) locus largely controls this difference between maize and teosinte, and thus may have played a pivotal role in maize evolution. The teosinte allele (tga1 + teosinte) lengthens inflorescence internodes, shortens rachillae, and makes glumes longer, thicker, and harder. Developmental characterization of morphometric traits reveals that differences among genotypes are apparent early in female inflorescence development. Increased hardening in glumes homozygous for tga1 + teosinte is correlated with a thicker abaxial mesoderm of lignified cells. Silica deposition in the abaxial epidermal cells of the glumes is also affected. In the maize background, glumes homozygous for tga1 + teosinte deposit silica in both the short and long cells of the glume epidermis, whereas glumes homozygous for the maize allele (Tga1 + Maize) concentrate silica only in the short cells. Silica deposition also appears to be affected by genetic background. The effects of tga1 appear largely to explain the differences in glume induration between maize and teosinte. The diverse pleiotropic effects of tgal suggest that it is regulatory in nature.

Page Thumbnails

  • Thumbnail: Page 
1313
    1313
  • Thumbnail: Page 
1314
    1314
  • Thumbnail: Page 
1315
    1315
  • Thumbnail: Page 
1316
    1316
  • Thumbnail: Page 
1317
    1317
  • Thumbnail: Page 
1318
    1318
  • Thumbnail: Page 
1319
    1319
  • Thumbnail: Page 
1320
    1320
  • Thumbnail: Page 
1321
    1321
  • Thumbnail: Page 
1322
    1322