Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Submarine Pollination in the Marine Angiosperm Zostera marina (Zosteraceae). I. The Influence of Floral Morphology on Fluid Flow

Josef Daniel Ackerman
American Journal of Botany
Vol. 84, No. 8 (Aug., 1997), pp. 1099-1109
Stable URL: http://www.jstor.org/stable/2446153
Page Count: 11
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Submarine Pollination in the Marine Angiosperm Zostera marina (Zosteraceae). I. The Influence of Floral Morphology on Fluid Flow
Preview not available

Abstract

An understanding of the process of submarine pollination should provide insight into the evolutionary and reproductive ecology of the marine angiosperms (seagrasses). The flow around the reproductive organs of the seagrass Zostera marina L. (Potamogetonales) was, therefore, examined in a flow chamber. The phenological emergence of flowers during (1) pollen capture and (2) pollen release, and by fruit during (3) seed release, led to a reduction in flow rate toward the inflorescence. This change in flow due to floral emergence was associated with a 50% increase in the fluid shear stress [tau = (2.2 ± 0.3) x 10-3 Pa for an immature flower vs. τ = (3.1 ± 0.5) x 10-3 Pa for a receptive flower]. The Reynolds number (Re) and fluid shear stress around inflorescences and infructescences were comparable, indicating a dynamic similarity in the processes of pollen capture and fruit dehiscence [Re = 47 ± 5, τ = (1.6 ± 0.3) x 10-3 Pa for inflorescences; Re = 38 ±0 5, τ = (1.3 ± 0.1) x 10-3 Pa for infructescences]. These results indicate that the emergence of reproductive organs leads to changes in fluid shear stress, which will affect the release, transport, and capture of particles including pollen. Theoretical considerations of these observations using aerosol-filtration theory suggest that pollen capture in Z. marina occurs through direct interception of pollen by stigmas.

Page Thumbnails

  • Thumbnail: Page 
1099
    1099
  • Thumbnail: Page 
1100
    1100
  • Thumbnail: Page 
1101
    1101
  • Thumbnail: Page 
1102
    1102
  • Thumbnail: Page 
1103
    1103
  • Thumbnail: Page 
1104
    1104
  • Thumbnail: Page 
1105
    1105
  • Thumbnail: Page 
1106
    1106
  • Thumbnail: Page 
1107
    1107
  • Thumbnail: Page 
1108
    1108
  • Thumbnail: Page 
1109
    1109