Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Genetic Recombination Can Generate Altered Restriction Specificity

F. V. Fuller-Pace, L. R. Bullas, H. Delius and N. E. Murray
Proceedings of the National Academy of Sciences of the United States of America
Vol. 81, No. 19, [Part 1: Biological Sciences] (Oct. 1, 1984), pp. 6095-6099
Stable URL: http://www.jstor.org/stable/24570
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Genetic Recombination Can Generate Altered Restriction Specificity
Preview not available

Abstract

A recombinant strain, isolated following the transduction of an Escherichia coli recipient carrying the Salmonella typhimurium (SB) specificity genes with DNA from a donor having the Salmonella potsdam (SP) specificity, was shown [Bullas, L. R., Colson, C. & Van Pel, A. (1976) J. Gen. Microbiol. 95, 166-172] to have neither SB nor SP specificity but to encode a novel restriction specificity, SQ. The heteroduplex analysis of the hsdS (specificity) genes of the SB and SP restriction and modification systems described here identifies a conserved sequence of around 100 base pairs flanked by two nonhomologous regions each of approximately 500 base pairs. This organization parallels that previously deduced from the DNA sequences of the hsdS genes of the related E. coli K-12, B, and D restriction systems. The present heteroduplex analyses further show that the hsdS gene conferring the SQ specificity derives one nonhomologous region from the SB gene and the other from the SP gene, as predicted from genetic exchange within the conserved sequence. This finding supports the idea that two domains of an hsdS polypeptide, which are different for each specificity, may correlate with two regions of the DNA sequence recognized. It has been shown that the recognition sequences for E. coli K-12 and B each consist of two short oligonucleotide sequences interrupted by a nonspecific sequence. A similar organization is suggested for the Salmonella specificity systems, providing the potential for evolutionary diversification of restriction specificities as a result of recombination within the conserved sequence of the hsdS gene.

Page Thumbnails

  • Thumbnail: Page 
6095
    6095
  • Thumbnail: Page 
6096
    6096
  • Thumbnail: Page 
6097
    6097
  • Thumbnail: Page 
6098
    6098
  • Thumbnail: Page 
6099
    6099