Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Relative Rates of Evolution of Sex Chromosomes and Autosomes

B. Charlesworth, J. A. Coyne and N. H. Barton
The American Naturalist
Vol. 130, No. 1 (Jul., 1987), pp. 113-146
Stable URL: http://www.jstor.org/stable/2461884
Page Count: 34
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Relative Rates of Evolution of Sex Chromosomes and Autosomes
Preview not available

Abstract

We develop models of the rates of evolution at sex-linked and autosomal loci and of the rates of fixation of chromosomal rearrangements involving sex chromosomes and autosomes. We show that the substitution of selectively favorable mutations often proceeds more rapidly for X- or Y-linked loci than for the autosomes, provided that mutations are recessive or partially recessive on the average. Selection acting on a quantitative character is expected to result in similar long-term rates of gene substitution for X-linked and autosomal loci, unless there is strong directional dominance. Short-term responses to such selection often preferentially fix alleles at autosomal loci. The fixation of slightly deleterious alleles by random drift and the stochastic turnover of alleles at loci controlling quantitative characters under stabilizing selection usually proceed somewhat more slowly at sex-linked loci. In contrast, the fixation of underdominant chromosomal rearrangements by random genetic drift is faster with sex linkage. Sex-specific selection may also differentially favor the fixation of sex-linked rearrangements. These results are discussed in relation to genetic and cytological data on species differences. We show that the frequently disproportionate effects of the sex chromosomes on interspecific inviability or sterility are consistent with the hypothesis that the gene differences concerned involve recessive or partially recessive alleles fixed by selection. Haldane's rule is readily interpreted in this light. There is little evidence for strong effects of the sex chromosomes on quantitative characters in interspecific crosses, in accordance with our theoretical results. Thus, the evolution of reproductive isolation may not be the byproduct of selective change in additively inherited, polygenic traits. Rather, it may be due mainly to the fixation of favorable mutations whose effects on fitness reflect locus-specific effects on the phenotype. These mutations behave as major genes in the sense of contributing the bulk of the genetic variance in the characters that they control during the course of the mutations' substitution. The data on the genetics of short-term responses to selection in Drosophila are hard to interpret, but, in accordance with theory, these responses do not usually seem to involve the X chromosome disproportionately. In some groups, there is evidence for a disproportionate role of the sex chromosomes in chromosomal changes, but others show no clear pattern. Factors that may distort the expectations of the simple models of chromosomal evolution are discussed.

Page Thumbnails

  • Thumbnail: Page 
[113]
    [113]
  • Thumbnail: Page 
114
    114
  • Thumbnail: Page 
115
    115
  • Thumbnail: Page 
116
    116
  • Thumbnail: Page 
117
    117
  • Thumbnail: Page 
118
    118
  • Thumbnail: Page 
119
    119
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121
  • Thumbnail: Page 
122
    122
  • Thumbnail: Page 
123
    123
  • Thumbnail: Page 
124
    124
  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
[138]
    [138]
  • Thumbnail: Page 
139
    139
  • Thumbnail: Page 
[140]
    [140]
  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142
  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146