Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Linking Marine and Terrestrial Food Webs: Allochthonous Input from the Ocean Supports High Secondary Productivity on Small Islands and Coastal Land Communities

Gary A. Polis and Stephen D. Hurd
The American Naturalist
Vol. 147, No. 3 (Mar., 1996), pp. 396-423
Stable URL: http://www.jstor.org/stable/2463215
Page Count: 28
  • Get Access
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Linking Marine and Terrestrial Food Webs: Allochthonous Input from the Ocean Supports High Secondary Productivity on Small Islands and Coastal Land Communities
Preview not available

Abstract

This study quantifies the flow of energy and biomass from a productive marine system to a relatively unproductive terrestrial system. Biomass from marine food webs (here, the Gulf of California) enters the terrestrial webs of islands and coastal areas through two conduits: (1) shore drift of algal wrack and carrion and (2) colonies of seabirds. Both conduits support dense assemblages of consumers: arthropods are 85-560 times more abundant in the supralittoral than inland and 2.2 times more abundant on islands with seabird colonies than those without. Marine input (MI), not terrestrial primary productivity (TP) by land plants, provides most energy and biomass for terrestrial communities on 16 of 19 study islands. The ratio of perimeter to area (P/A) significantly predicts arthropod abundance on islands and is the major determinant of the relative importance of allochthonous flow; we expect P/A ratio to be important wherever transport of nutrients, detritus, and organisms among habitats occurs. Similar transport phenomena generally take place, often with significant impact, on coastal habitats and islands worldwide. Such input subsidizes a diverse array of terrestrial consumers; in many cases, subsidized consumers reach extraordinarily high densities and thus can depress their in situ resources. In general, we propose that such flow is often a key feature of the energetics, structure, and dynamics of populations, food webs, and communities whenever any two habitats, differing in productivity, are juxtaposed.

Page Thumbnails

  • Thumbnail: Page 
[396]
    [396]
  • Thumbnail: Page 
397
    397
  • Thumbnail: Page 
398
    398
  • Thumbnail: Page 
399
    399
  • Thumbnail: Page 
400
    400
  • Thumbnail: Page 
401
    401
  • Thumbnail: Page 
402
    402
  • Thumbnail: Page 
403
    403
  • Thumbnail: Page 
404
    404
  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408
  • Thumbnail: Page 
409
    409
  • Thumbnail: Page 
410
    410
  • Thumbnail: Page 
411
    411
  • Thumbnail: Page 
412
    412
  • Thumbnail: Page 
413
    413
  • Thumbnail: Page 
414
    414
  • Thumbnail: Page 
415
    415
  • Thumbnail: Page 
416
    416
  • Thumbnail: Page 
417
    417
  • Thumbnail: Page 
418
    418
  • Thumbnail: Page 
419
    419
  • Thumbnail: Page 
420
    420
  • Thumbnail: Page 
421
    421
  • Thumbnail: Page 
422
    422
  • Thumbnail: Page 
423
    423