Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data

Emilia P. Martins and Thomas F. Hansen
The American Naturalist
Vol. 149, No. 4 (Apr., 1997), pp. 646-667
Stable URL: http://www.jstor.org/stable/2463542
Page Count: 22
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data
Preview not available

Abstract

This article considers the statistical issues relevant to the comparative method in evolutionary biology. A generalized linear model (GLM) is presented for the analysis of comparative data, which can be used to address questions regarding the relationship between traits or between traits and environments, the rate of phenotypic evolution, the degree of phylogenetic effect, and the ancestral state of a character. Our approach thus emphasizes the similarity among evolutionary questions asked in comparative studies. We then discuss ways of specifying the sources of error involved in a comparative study (e.g., measurement error, error due to evolution along a phylogeny, error due to misspecification of a phylogeny) and show how the impact of these sources of error can be taken into account in a comparative analysis. In contrast to most existing phylogenetic comparative methods, our procedure offers substantial flexibility in the choice of microevolutionary assumptions underlying the statistical analysis, allowing researchers to choose assumptions that are most appropriate for their particular set of data and evolutionary question. In developing the approach, we also propose novel ways of incorporating within-species variation and/or measurement error into phylogenetic analyses, of estimating ancestral states, and of considering both continuous (quantitative) and categorical (qualitative or "state") characters in the same analysis.

Page Thumbnails

  • Thumbnail: Page 
[646]
    [646]
  • Thumbnail: Page 
647
    647
  • Thumbnail: Page 
648
    648
  • Thumbnail: Page 
649
    649
  • Thumbnail: Page 
650
    650
  • Thumbnail: Page 
[651]
    [651]
  • Thumbnail: Page 
652
    652
  • Thumbnail: Page 
653
    653
  • Thumbnail: Page 
654
    654
  • Thumbnail: Page 
655
    655
  • Thumbnail: Page 
656
    656
  • Thumbnail: Page 
657
    657
  • Thumbnail: Page 
658
    658
  • Thumbnail: Page 
659
    659
  • Thumbnail: Page 
660
    660
  • Thumbnail: Page 
661
    661
  • Thumbnail: Page 
662
    662
  • Thumbnail: Page 
663
    663
  • Thumbnail: Page 
664
    664
  • Thumbnail: Page 
665
    665
  • Thumbnail: Page 
666
    666
  • Thumbnail: Page 
667
    667