Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Aerodynamics and Pollen Grain Depositional Patterns on Cycad Megastrobili: Implications on the Reproduction of Three Cycad Genera (Cycas, Dioon, and Zamia)

Karl J. Niklas and Knut Norstog
Botanical Gazette
Vol. 145, No. 1 (Mar., 1984), pp. 92-104
Stable URL: http://www.jstor.org/stable/2474519
Page Count: 13
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Aerodynamics and Pollen Grain Depositional Patterns on Cycad Megastrobili: Implications on the Reproduction of Three Cycad Genera (Cycas, Dioon, and Zamia)
Preview not available

Abstract

Characteristic air-disturbance patterns around megastrobili of Cycas, Dioon, and two species of Zamia (Z. pumila and Z. furfuracea) influence the pattern and quantity of wind-borne pollen grain deposition on ovules and surfaces of megasporophylls. The greatest number of adhering pollen grains is found on the windward profiles of cycad cones, with the density of pollen grains generally diminishing along cone surfaces oriented parallel to airflow. Cycas megastrobili preferentially deflect airflow passing over the cone toward leeward, distal surfaces, where pollen grains accumulate. Dioon cones deflect airflow and pollen grains toward leeward, proximal surfaces, where pollen grains preferentially impact with or settle on the surfaces of sterile bracts. Zamia pumila megastrobili have a fairly uniform distal to proximal distribution of pollen grain impactions. Zamia furfuracea megastrobili split longitudinally along the contact zones of orthostichous megasporophylls. Air currents carrying pollen grains into the cone through these openings circulate within the cone, centrifugally depositing pollen on ovules and megasporophyll surfaces. Statistical analyses of pollen distribution in Cycas, Dioon, and Z. pumila indicate no significant differences between the number of pollen grains adhering to surfaces of ovules and adjacent megasporophylls. Although the general pattern of pollen grains adhering to megastrobili of Cycas and Dioon is the result of nonrandom aerodynamic processes, direct wind pollination in all four taxa appears to be stochastic. The preferential concentration of pollen on the distal portions of Cycas megastrobili may aid pollination. Water, dislodging adhering pollen grains, flows along the glabrous ovule-bearing margins of megasporophylls and accumulates on or near micropyles. Similarly, air eddies may sift pollen into the cone onto ovules. By contrast, the preferential accumulation of pollen on the proximal, sterile bracts of Dioon, in conjunction with insect foraging and semidestructive burrowing into the cone, may effect pollination. We suggest that cycad pollination may have two phases: (1) the transport of wind-borne pollen grains to megastrobili (Cycas, Dioon, and Zamia), and (2) the subsequent transport of adhering pollen to ovules by water and/or passive sifting (Cycas) or insect activity (Dioon, and possibly Zamia).

Page Thumbnails

  • Thumbnail: Page 
92
    92
  • Thumbnail: Page 
93
    93
  • Thumbnail: Page 
94
    94
  • Thumbnail: Page 
95
    95
  • Thumbnail: Page 
[96]
    [96]
  • Thumbnail: Page 
97
    97
  • Thumbnail: Page 
98
    98
  • Thumbnail: Page 
99
    99
  • Thumbnail: Page 
100
    100
  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103
  • Thumbnail: Page 
104
    104