Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Prevention of Some Electrophysiologic and Biochemical Abnormalities with Oxygen Supplementation in Experimental Diabetic Neuropathy

P. A. Low, R. R. Tuck, P. J. Dyck, J. D. Schmelzer and J. K. Yao
Proceedings of the National Academy of Sciences of the United States of America
Vol. 81, No. 21, [Part 1: Biological Sciences] (Nov. 1, 1984), pp. 6894-6898
Stable URL: http://www.jstor.org/stable/24854
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Prevention of Some Electrophysiologic and Biochemical Abnormalities with Oxygen Supplementation in Experimental Diabetic Neuropathy
Preview not available

Abstract

Endoneurial hypoxia has been suggested as a mechanism of human and experimental diabetic neuropathy (EDN). We found that rats rendered diabetic for 4 months had reduced nerve blood flow (NBF) and nerve oxygen tension (Pno2). The NBF was reduced by at least 33% in EDN and 60% of the oxygen tensions in the endoneurial O2 histogram were less than 25 mm Hg (3.3 kPa) in EDN compared with only 19% in the controls. To test the hypothesis that EDN may in part be due to hypoxia, we studied the effectiveness of oxygen supplementation in preventing some electrophysiologic and biochemical abnormalities. Rats with EDN had reduced caudal nerve conduction velocity and had a resistance to ischemic conduction block. When a matched groups of rats with EDN were O2 supplemented for 4 weeks, the time to 50% block of nerve conduction and nerve conduction velocity was no longer statistically different from controls. Endoneurial free sugars (glucose, fructose, sorbitol) were markedly increased in EDN. Oxygen supplementation resulted in no change in plasma glucose; by contrast, these increased endoneurial free sugars were significantly reduced (towards normal) by 60%, 33%, and 34%, respectively. myo-Inositol, however, was further decreased by oxygen supplementation. These findings of a partial prevention of electrophysiologic and biochemical abnormalities support a role of hypoxia in the pathogenesis of EDN.

Page Thumbnails

  • Thumbnail: Page 
6894
    6894
  • Thumbnail: Page 
6895
    6895
  • Thumbnail: Page 
6896
    6896
  • Thumbnail: Page 
6897
    6897
  • Thumbnail: Page 
6898
    6898