Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Enamel Microwear in Caviomorph Rodents

K. E. Beth Townsend and Darin A. Croft
Journal of Mammalogy
Vol. 89, No. 3 (Jun., 2008), pp. 730-743
Stable URL: http://www.jstor.org/stable/25145150
Page Count: 14
  • Read Online (Free)
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Enamel Microwear in Caviomorph Rodents
Preview not available

Abstract

We developed a new data set of enamel microwear for extant caviomorph rodents (i.e., South American hystricognaths) and inferred the diet of an extinct taxon, Neoreomys australis, from data on microwear. To evaluate frequencies of wear features (pits and scratches) in caviomorphs, we employed low-magnification microwear, which has been used successfully by others to distinguish among the diets of ungulates, primates, and sciurid rodents. We developed 3 broad dietary categories for caviomorphs based on behavioral observations reported in the literature: fruit-leaf, fruit-seed, and grass-leaf. Caviomorphs in general all exhibited wear features indicative of processing hard objects (e.g., seed predation, eating hard fruits, and consuming exogenous grit). Among our grass-leaf group, we identified an exogenous-grit subgroup that included fossorial and dust-bathing taxa. We used a discriminant function analysis of wear features to examine post hoc classification of the caviomorph taxa into the 3 dietary categories. Ours is the 1st study to quantify the distribution of microwear features among modern caviomorph rodents; it has the potential to clarify the diets of modern forms that have little behavioral data as well as to infer the diets of extinct species.

Page Thumbnails

  • Thumbnail: Page 
730
    730
  • Thumbnail: Page 
731
    731
  • Thumbnail: Page 
732
    732
  • Thumbnail: Page 
733
    733
  • Thumbnail: Page 
734
    734
  • Thumbnail: Page 
735
    735
  • Thumbnail: Page 
736
    736
  • Thumbnail: Page 
737
    737
  • Thumbnail: Page 
738
    738
  • Thumbnail: Page 
739
    739
  • Thumbnail: Page 
740
    740
  • Thumbnail: Page 
741
    741
  • Thumbnail: Page 
742
    742
  • Thumbnail: Page 
743
    743