If you need an accessible version of this item please contact JSTOR User Support

Relative Entropy, Exponential Utility, and Robust Dynamic Pricing

Andrew E. B. Lim and J. George Shanthikumar
Operations Research
Vol. 55, No. 2 (Mar. - Apr., 2007), pp. 198-214
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/25147071
Page Count: 17
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Relative Entropy, Exponential Utility, and Robust Dynamic Pricing
Preview not available

Abstract

In the area of dynamic revenue management, optimal pricing policies are typically computed on the basis of an underlying demand rate model. From the perspective of applications, this approach implicitly assumes that the model is an accurate representation of the real-world demand process and that the parameters characterizing this model can be accurately calibrated using data. In many situations, neither of these conditions are satisfied. Indeed, models are usually simplified for the purpose of tractability and may be difficult to calibrate because of a lack of data. Moreover, pricing policies that are computed under the assumption that the model is correct may perform badly when this is not the case. This paper presents an approach to single-product dynamic revenue management that accounts for errors in the underlying model at the optimization stage. Uncertainty in the demand rate model is represented using the notion of relative entropy, and a tractable reformulation of the "robust pricing problem" is obtained using results concerning the change of probability measure for point processes. The optimal pricing policy is obtained through a version of the so-called Isaacs' equation for stochastic differential games, and the structural properties of the optimal solution are obtained through an analysis of this equation. In particular, (i) closed-form solutions for the special case of an exponential nominal demand rate model, (ii) general conditions for the exchange of the "max" and the "min" in the differential game, and (iii) the equivalence between the robust pricing problem and that of single-product revenue management with an exponential utility function without model uncertainty, are established through the analysis of this equation.

Page Thumbnails

  • Thumbnail: Page 
198
    198
  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202
  • Thumbnail: Page 
203
    203
  • Thumbnail: Page 
204
    204
  • Thumbnail: Page 
205
    205
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211
  • Thumbnail: Page 
212
    212
  • Thumbnail: Page 
213
    213
  • Thumbnail: Page 
214
    214